A Twocrypto-NG pool consists of two non-pegged assets. The LP token is a ERC-20 token integrated directly into the liquidity pool.
Liquidity Pool (LP) Token
The LP token is directly integrated into the exchange contract. Pool and LP token share the same address.
The token has the regular ERC-20 methods, which will not be further documented.
In Twocrypto-NG pools, price scaling and fee parameters are bundled and stored as a single unsigned integer. This consolidation reduces storage read and write operations, leading to more cost-efficient calls.
pack
This internal function packs two or three integers into a single uint256.
```vyper
@pure
@internal
def _pack_2(p1: uint256, p2: uint256) -> uint256:
return p1 | (p2 << 128)
@internal
@pure
def _pack_3(x: uint256[3]) -> uint256:
"""
@notice Packs 3 integers with values <= 10**18 into a uint256
@param x The uint256[3] to pack
@return uint256 Integer with packed values
"""
return (x[0] << 128) | (x[1] << 64) | x[2]
```
unpack
This internal function unpacks a single uin256 into two or three integers.
```vyper
@pure
@internal
def _unpack_2(packed: uint256) -> uint256[2]:
return [packed & (2**128 - 1), packed >> 128]
@internal
@pure
def _unpack_3(_packed: uint256) -> uint256[3]:
"""
@notice Unpacks a uint256 into 3 integers (values must be <= 10**18)
@param val The uint256 to unpack
@return uint256[3] A list of length 3 with unpacked integers
"""
return [
(_packed >> 128) & 18446744073709551615,
(_packed >> 64) & 18446744073709551615,
_packed & 18446744073709551615,
]
```
The AMM contract utilizes two internal functions to transfer coins in and out of the pool e.g. when exchanging tokens or adding/removing liquidity:
Internal function to transfer tokens into the AMM, called by exchange, exchange_received or add_liquidity.
Input
Type
Description
_coin_idx
int128
Index of the token to transfer in.
_dx
uint256
Amount to transfer in.
sender
address
Address to transfer coins from.
expect_optimistic_transfer
bool
True if the contract expects an optimistic coin transfer.
expect_optimistic_transfer is only True when using the exchange_received function.
balances:public(uint256[N_COINS])@internaldef_transfer_in(_coin_idx:uint256,_dx:uint256,sender:address,expect_optimistic_transfer:bool,)->uint256:""" @notice Transfers `_coin` from `sender` to `self` and calls `callback_sig` if it is not empty. @params _coin_idx uint256 Index of the coin to transfer in. @params dx amount of `_coin` to transfer into the pool. @params sender address to transfer `_coin` from. @params expect_optimistic_transfer bool True if pool expects user to transfer. This is only enabled for exchange_received. @return The amount of tokens received. """coin_balance:uint256=ERC20(coins[_coin_idx]).balanceOf(self)ifexpect_optimistic_transfer:# Only enabled in exchange_received:# it expects the caller of exchange_received to have sent tokens to# the pool before calling this method.# If someone donates extra tokens to the contract: do not acknowledge.# We only want to know if there are dx amount of tokens. Anything extra,# we ignore. This is why we need to check if received_amounts (which# accounts for coin balances of the contract) is atleast dx.# If we checked for received_amounts == dx, an extra transfer without a# call to exchange_received will break the method.dx:uint256=coin_balance-self.balances[_coin_idx]assertdx>=_dx# dev: user didn't give us coins# Adjust balancesself.balances[_coin_idx]+=dxreturndx# ----------------------------------------------- ERC20 transferFrom flow.# EXTERNAL CALLassertERC20(coins[_coin_idx]).transferFrom(sender,self,_dx,default_return_value=True)dx:uint256=ERC20(coins[_coin_idx]).balanceOf(self)-coin_balanceself.balances[_coin_idx]+=dxreturndx
Internal function to transfer tokens out of the AMM, called by the remove_liquidity, remove_liquidity_one, _claim_admin_fees, and _exchange methods.
Input
Type
Description
_coin_idx
int128
Index of the token to transfer out.
_amount
uint256
Amount to transfer out.
receiver
address
Address to send the tokens to.
balances:public(uint256[N_COINS])@internaldef_transfer_out(_coin_idx:uint256,_amount:uint256,receiver:address):""" @notice Transfer a single token from the pool to receiver. @dev This function is called by `remove_liquidity` and `remove_liquidity_one`, `_claim_admin_fees` and `_exchange` methods. @params _coin_idx uint256 Index of the token to transfer out @params _amount Amount of token to transfer out @params receiver Address to send the tokens to """# Adjust balances before handling transfers:self.balances[_coin_idx]-=_amount# EXTERNAL CALLassertERC20(coins[_coin_idx]).transfer(receiver,_amount,default_return_value=True)
The contract offers two different ways to exchange tokens:
A regular exchange method.
A novel exchange_received method, which swaps tokens based on the "internal balances" of the pool. This method is of great use for aggregators, as it does not require token approval of the pool, which eliminates certain smart contract risks and can remove one redundant ERC-20 transfer. More here.
Function to exchange dx amount of coin i for coin j and receive a minimum amount of min_dy. Charged fee at current states is Pool.fee().
Returns: amount of output coin j received (uint256).
Emits: TokenExchange
Input
Type
Description
i
uint256
Index value for the input coin.
j
uint256
Index value for the output coin.
dx
uint256
Amount of input coin being swapped in.
min_dy
uint256
Minimum amount of output coin to receive.
receiver
address
Address to send output coin to. Defaults to msg.sender.
Source code
eventTokenExchange:buyer:indexed(address)sold_id:uint256tokens_sold:uint256bought_id:uint256tokens_bought:uint256fee:uint256packed_price_scale:uint256@external@nonreentrant("lock")defexchange(i:uint256,j:uint256,dx:uint256,min_dy:uint256,receiver:address=msg.sender)->uint256:""" @notice Exchange using wrapped native token by default @param i Index value for the input coin @param j Index value for the output coin @param dx Amount of input coin being swapped in @param min_dy Minimum amount of output coin to receive @param receiver Address to send the output coin to. Default is msg.sender @return uint256 Amount of tokens at index j received by the `receiver """# _transfer_in updates self.balances here:dx_received:uint256=self._transfer_in(i,dx,msg.sender,False)# No ERC20 token transfers occur here:out:uint256[3]=self._exchange(i,j,dx_received,min_dy,)# _transfer_out updates self.balances here. Update to state occurs before# external calls:self._transfer_out(j,out[0],receiver)# log:logTokenExchange(msg.sender,i,dx_received,j,out[0],out[1],out[2])returnout[0]@internaldef_exchange(i:uint256,j:uint256,dx_received:uint256,min_dy:uint256,)->uint256[3]:asserti!=j# dev: coin index out of rangeassertdx_received>0# dev: do not exchange 0 coinsA_gamma:uint256[2]=self._A_gamma()xp:uint256[N_COINS]=self.balancesdy:uint256=0y:uint256=xp[j]x0:uint256=xp[i]-dx_received# old xp[i]price_scale:uint256=self.cached_price_scalexp=[xp[0]*PRECISIONS[0],unsafe_div(xp[1]*price_scale*PRECISIONS[1],PRECISION)]# ----------- Update invariant if A, gamma are undergoing ramps ---------t:uint256=self.future_A_gamma_timeift>block.timestamp:x0*=PRECISIONS[i]ifi>0:x0=unsafe_div(x0*price_scale,PRECISION)x1:uint256=xp[i]# <------------------ Back up old value in xp ...xp[i]=x0# |self.D=MATH.newton_D(A_gamma[0],A_gamma[1],xp,0)# |xp[i]=x1# <-------------------------------------- ... and restore.# ----------------------- Calculate dy and fees --------------------------D:uint256=self.Dy_out:uint256[2]=MATH.get_y(A_gamma[0],A_gamma[1],xp,D,j)dy=xp[j]-y_out[0]xp[j]-=dydy-=1ifj>0:dy=dy*PRECISION/price_scaledy/=PRECISIONS[j]fee:uint256=unsafe_div(self._fee(xp)*dy,10**10)dy-=fee# <--------------------- Subtract fee from the outgoing amount.assertdy>=min_dy,"Slippage"y-=dyy*=PRECISIONS[j]ifj>0:y=unsafe_div(y*price_scale,PRECISION)xp[j]=y# <------------------------------------------------- Update xp.# ------ Tweak price_scale with good initial guess for newton_D ----------price_scale=self.tweak_price(A_gamma,xp,0,y_out[1])return[dy,fee,price_scale]
@external@viewdefnewton_D(ANN:uint256,gamma:uint256,x_unsorted:uint256[N_COINS],K0_prev:uint256=0)->uint256:""" Finding the invariant using Newton method. ANN is higher by the factor A_MULTIPLIER ANN is already A * N**N """# Safety checksassertANN>MIN_A-1andANN<MAX_A+1# dev: unsafe values Aassertgamma>MIN_GAMMA-1andgamma<MAX_GAMMA+1# dev: unsafe values gamma# Initial value of invariant D is that for constant-product invariantx:uint256[N_COINS]=x_unsortedifx[0]<x[1]:x=[x_unsorted[1],x_unsorted[0]]assertx[0]>10**9-1andx[0]<10**15*10**18+1# dev: unsafe values x[0]assertunsafe_div(x[1]*10**18,x[0])>10**14-1# dev: unsafe values x[i] (input)S:uint256=unsafe_add(x[0],x[1])# can unsafe add here because we checked x[0] boundsD:uint256=0ifK0_prev==0:D=N_COINS*isqrt(unsafe_mul(x[0],x[1]))else:# D = isqrt(x[0] * x[1] * 4 / K0_prev * 10**18)D=isqrt(unsafe_mul(unsafe_div(unsafe_mul(unsafe_mul(4,x[0]),x[1]),K0_prev),10**18))ifS<D:D=S__g1k0:uint256=gamma+10**18diff:uint256=0foriinrange(255):D_prev:uint256=DassertD>0# Unsafe division by D and D_prev is now safe# K0: uint256 = 10**18# for _x in x:# K0 = K0 * _x * N_COINS / D# collapsed for 2 coinsK0:uint256=unsafe_div(unsafe_div((10**18*N_COINS**2)*x[0],D)*x[1],D)_g1k0:uint256=__g1k0if_g1k0>K0:_g1k0=unsafe_add(unsafe_sub(_g1k0,K0),1)# > 0else:_g1k0=unsafe_add(unsafe_sub(K0,_g1k0),1)# > 0# D / (A * N**N) * _g1k0**2 / gamma**2mul1:uint256=unsafe_div(unsafe_div(unsafe_div(10**18*D,gamma)*_g1k0,gamma)*_g1k0*A_MULTIPLIER,ANN)# 2*N*K0 / _g1k0mul2:uint256=unsafe_div(((2*10**18)*N_COINS)*K0,_g1k0)# calculate neg_fprime. here K0 > 0 is being validated (safediv).neg_fprime:uint256=(S+unsafe_div(S*mul2,10**18))+mul1*N_COINS/K0-unsafe_div(mul2*D,10**18)# D -= f / fprime; neg_fprime safediv being validatedD_plus:uint256=D*(neg_fprime+S)/neg_fprimeD_minus:uint256=unsafe_div(D*D,neg_fprime)if10**18>K0:D_minus+=unsafe_div(unsafe_div(D*unsafe_div(mul1,neg_fprime),10**18)*unsafe_sub(10**18,K0),K0)else:D_minus-=unsafe_div(unsafe_div(D*unsafe_div(mul1,neg_fprime),10**18)*unsafe_sub(K0,10**18),K0)ifD_plus>D_minus:D=unsafe_sub(D_plus,D_minus)else:D=unsafe_div(unsafe_sub(D_minus,D_plus),2)ifD>D_prev:diff=unsafe_sub(D,D_prev)else:diff=unsafe_sub(D_prev,D)ifdiff*10**14<max(10**16,D):# Could reduce precision for gas efficiency herefor_xinx:frac:uint256=_x*10**18/Dassert(frac>=10**16-1)and(frac<10**20+1)# dev: unsafe values x[i]returnDraise"Did not converge"@external@puredefget_y(_ANN:uint256,_gamma:uint256,_x:uint256[N_COINS],_D:uint256,i:uint256)->uint256[2]:# Safety checksassert_ANN>MIN_A-1and_ANN<MAX_A+1# dev: unsafe values Aassert_gamma>MIN_GAMMA-1and_gamma<MAX_GAMMA+1# dev: unsafe values gammaassert_D>10**17-1and_D<10**15*10**18+1# dev: unsafe values DANN:int256=convert(_ANN,int256)gamma:int256=convert(_gamma,int256)D:int256=convert(_D,int256)x_j:int256=convert(_x[1-i],int256)gamma2:int256=unsafe_mul(gamma,gamma)# savediv by x_j done here:y:int256=D**2/(x_j*N_COINS**2)# K0_i: int256 = (10**18 * N_COINS) * x_j / DK0_i:int256=unsafe_div(10**18*N_COINS*x_j,D)assert(K0_i>10**16*N_COINS-1)and(K0_i<10**20*N_COINS+1)# dev: unsafe values x[i]ann_gamma2:int256=ANN*gamma2# a = 10**36 / N_COINS**2a:int256=10**32# b = ANN*D*gamma2/4/10000/x_j/10**4 - 10**32*3 - 2*gamma*10**14b:int256=(D*ann_gamma2/400000000/x_j-convert(unsafe_mul(10**32,3),int256)-unsafe_mul(unsafe_mul(2,gamma),10**14))# c = 10**32*3 + 4*gamma*10**14 + gamma2/10**4 + 4*ANN*gamma2*x_j/D/10000/4/10**4 - 4*ANN*gamma2/10000/4/10**4c:int256=(unsafe_mul(10**32,convert(3,int256))+unsafe_mul(unsafe_mul(4,gamma),10**14)+unsafe_div(gamma2,10**4)+unsafe_div(unsafe_div(unsafe_mul(4,ann_gamma2),400000000)*x_j,D)-unsafe_div(unsafe_mul(4,ann_gamma2),400000000))# d = -(10**18+gamma)**2 / 10**4d:int256=-unsafe_div(unsafe_add(10**18,gamma)**2,10**4)# delta0: int256 = 3*a*c/b - bdelta0:int256=3*a*c/b-b# safediv by b# delta1: int256 = 9*a*c/b - 2*b - 27*a**2/b*d/bdelta1:int256=3*delta0+b-27*a**2/b*d/bdivider:int256=1threshold:int256=min(min(abs(delta0),abs(delta1)),a)ifthreshold>10**48:divider=10**30elifthreshold>10**46:divider=10**28elifthreshold>10**44:divider=10**26elifthreshold>10**42:divider=10**24elifthreshold>10**40:divider=10**22elifthreshold>10**38:divider=10**20elifthreshold>10**36:divider=10**18elifthreshold>10**34:divider=10**16elifthreshold>10**32:divider=10**14elifthreshold>10**30:divider=10**12elifthreshold>10**28:divider=10**10elifthreshold>10**26:divider=10**8elifthreshold>10**24:divider=10**6elifthreshold>10**20:divider=10**2a=unsafe_div(a,divider)b=unsafe_div(b,divider)c=unsafe_div(c,divider)d=unsafe_div(d,divider)# delta0 = 3*a*c/b - b: here we can do more unsafe ops now:delta0=unsafe_div(unsafe_mul(unsafe_mul(3,a),c),b)-b# delta1 = 9*a*c/b - 2*b - 27*a**2/b*d/bdelta1=3*delta0+b-unsafe_div(unsafe_mul(unsafe_div(unsafe_mul(27,a**2),b),d),b)# sqrt_arg: int256 = delta1**2 + 4*delta0**2/b*delta0sqrt_arg:int256=delta1**2+unsafe_mul(unsafe_div(4*delta0**2,b),delta0)sqrt_val:int256=0ifsqrt_arg>0:sqrt_val=convert(isqrt(convert(sqrt_arg,uint256)),int256)else:return[self._newton_y(_ANN,_gamma,_x,_D,i),0]b_cbrt:int256=0ifb>0:b_cbrt=convert(self._cbrt(convert(b,uint256)),int256)else:b_cbrt=-convert(self._cbrt(convert(-b,uint256)),int256)second_cbrt:int256=0ifdelta1>0:# second_cbrt = convert(self._cbrt(convert((delta1 + sqrt_val), uint256) / 2), int256)second_cbrt=convert(self._cbrt(convert(unsafe_add(delta1,sqrt_val),uint256)/2),int256)else:# second_cbrt = -convert(self._cbrt(convert(unsafe_sub(sqrt_val, delta1), uint256) / 2), int256)second_cbrt=-convert(self._cbrt(unsafe_div(convert(unsafe_sub(sqrt_val,delta1),uint256),2)),int256)# C1: int256 = b_cbrt**2/10**18*second_cbrt/10**18C1:int256=unsafe_div(unsafe_mul(unsafe_div(b_cbrt**2,10**18),second_cbrt),10**18)# root: int256 = (10**18*C1 - 10**18*b - 10**18*b*delta0/C1)/(3*a), keep 2 safe ops here.root:int256=(unsafe_mul(10**18,C1)-unsafe_mul(10**18,b)-unsafe_mul(10**18,b)/C1*delta0)/unsafe_mul(3,a)# y_out: uint256[2] = [# convert(D**2/x_j*root/4/10**18, uint256), # <--- y# convert(root, uint256) # <----------------------- K0Prev# ]y_out:uint256[2]=[convert(unsafe_div(unsafe_div(unsafe_mul(unsafe_div(D**2,x_j),root),4),10**18),uint256),convert(root,uint256)]frac:uint256=unsafe_div(y_out[0]*10**18,_D)assert(frac>=10**16-1)and(frac<10**20+1)# dev: unsafe value for yreturny_out
The transfer of coins into the pool and then calling exchange_received is highly advised to be done in the same transaction. If not, other users or MEV bots may frontrun exchange_received, potentially stealing the coins.
Function to exchange dx amount of coin i for coin j and receive a minimum amount of min_dy. This function requires a transfer of dx amount of coin i to the pool prior to calling this function, as this exchange is based on the change of token balances in the pool. The pool will not call transferFrom and will only check if a surplus of coins[i] is greater than or equal to dx. Charged fee at current states is Pool.fee().
Returns: amount of output coin j received (uint256).
Emits: TokenExchange
Input
Type
Description
i
uint256
Index value for the input coin.
j
uint256
Index value for the output coin.
dx
uint256
Amount of input coin being swapped in.
min_dy
uint256
Minimum amount of output coin to receive.
receiver
address
Address to send output coin to. Defaults to msg.sender.
Source code
eventTokenExchange:buyer:indexed(address)sold_id:uint256tokens_sold:uint256bought_id:uint256tokens_bought:uint256fee:uint256packed_price_scale:uint256@external@nonreentrant('lock')defexchange_received(i:uint256,j:uint256,dx:uint256,min_dy:uint256,receiver:address=msg.sender,)->uint256:""" @notice Exchange: but user must transfer dx amount of coin[i] tokens to pool first. Pool will not call transferFrom and will only check if a surplus of coins[i] is greater than or equal to `dx`. @dev Use-case is to reduce the number of redundant ERC20 token transfers in zaps. Primarily for dex-aggregators/arbitrageurs/searchers. Note for users: please transfer + exchange_received in 1 tx. @param i Index value for the input coin @param j Index value for the output coin @param dx Amount of input coin being swapped in @param min_dy Minimum amount of output coin to receive @param receiver Address to send the output coin to @return uint256 Amount of tokens at index j received by the `receiver` """# _transfer_in updates self.balances here:dx_received:uint256=self._transfer_in(i,dx,msg.sender,True# <---- expect_optimistic_transfer is set to True here.)# No ERC20 token transfers occur here:out:uint256[3]=self._exchange(i,j,dx_received,min_dy,)# _transfer_out updates self.balances here. Update to state occurs before# external calls:self._transfer_out(j,out[0],receiver)# log:logTokenExchange(msg.sender,i,dx_received,j,out[0],out[1],out[2])returnout[0]@internaldef_exchange(i:uint256,j:uint256,dx_received:uint256,min_dy:uint256,)->uint256[3]:asserti!=j# dev: coin index out of rangeassertdx_received>0# dev: do not exchange 0 coinsA_gamma:uint256[2]=self._A_gamma()xp:uint256[N_COINS]=self.balancesdy:uint256=0y:uint256=xp[j]x0:uint256=xp[i]-dx_received# old xp[i]price_scale:uint256=self.cached_price_scalexp=[xp[0]*PRECISIONS[0],unsafe_div(xp[1]*price_scale*PRECISIONS[1],PRECISION)]# ----------- Update invariant if A, gamma are undergoing ramps ---------t:uint256=self.future_A_gamma_timeift>block.timestamp:x0*=PRECISIONS[i]ifi>0:x0=unsafe_div(x0*price_scale,PRECISION)x1:uint256=xp[i]# <------------------ Back up old value in xp ...xp[i]=x0# |self.D=MATH.newton_D(A_gamma[0],A_gamma[1],xp,0)# |xp[i]=x1# <-------------------------------------- ... and restore.# ----------------------- Calculate dy and fees --------------------------D:uint256=self.Dy_out:uint256[2]=MATH.get_y(A_gamma[0],A_gamma[1],xp,D,j)dy=xp[j]-y_out[0]xp[j]-=dydy-=1ifj>0:dy=dy*PRECISION/price_scaledy/=PRECISIONS[j]fee:uint256=unsafe_div(self._fee(xp)*dy,10**10)dy-=fee# <--------------------- Subtract fee from the outgoing amount.assertdy>=min_dy,"Slippage"y-=dyy*=PRECISIONS[j]ifj>0:y=unsafe_div(y*price_scale,PRECISION)xp[j]=y# <------------------------------------------------- Update xp.# ------ Tweak price_scale with good initial guess for newton_D ----------price_scale=self.tweak_price(A_gamma,xp,0,y_out[1])return[dy,fee,price_scale]
@external@viewdefnewton_D(ANN:uint256,gamma:uint256,x_unsorted:uint256[N_COINS],K0_prev:uint256=0)->uint256:""" Finding the invariant using Newton method. ANN is higher by the factor A_MULTIPLIER ANN is already A * N**N """# Safety checksassertANN>MIN_A-1andANN<MAX_A+1# dev: unsafe values Aassertgamma>MIN_GAMMA-1andgamma<MAX_GAMMA+1# dev: unsafe values gamma# Initial value of invariant D is that for constant-product invariantx:uint256[N_COINS]=x_unsortedifx[0]<x[1]:x=[x_unsorted[1],x_unsorted[0]]assertx[0]>10**9-1andx[0]<10**15*10**18+1# dev: unsafe values x[0]assertunsafe_div(x[1]*10**18,x[0])>10**14-1# dev: unsafe values x[i] (input)S:uint256=unsafe_add(x[0],x[1])# can unsafe add here because we checked x[0] boundsD:uint256=0ifK0_prev==0:D=N_COINS*isqrt(unsafe_mul(x[0],x[1]))else:# D = isqrt(x[0] * x[1] * 4 / K0_prev * 10**18)D=isqrt(unsafe_mul(unsafe_div(unsafe_mul(unsafe_mul(4,x[0]),x[1]),K0_prev),10**18))ifS<D:D=S__g1k0:uint256=gamma+10**18diff:uint256=0foriinrange(255):D_prev:uint256=DassertD>0# Unsafe division by D and D_prev is now safe# K0: uint256 = 10**18# for _x in x:# K0 = K0 * _x * N_COINS / D# collapsed for 2 coinsK0:uint256=unsafe_div(unsafe_div((10**18*N_COINS**2)*x[0],D)*x[1],D)_g1k0:uint256=__g1k0if_g1k0>K0:_g1k0=unsafe_add(unsafe_sub(_g1k0,K0),1)# > 0else:_g1k0=unsafe_add(unsafe_sub(K0,_g1k0),1)# > 0# D / (A * N**N) * _g1k0**2 / gamma**2mul1:uint256=unsafe_div(unsafe_div(unsafe_div(10**18*D,gamma)*_g1k0,gamma)*_g1k0*A_MULTIPLIER,ANN)# 2*N*K0 / _g1k0mul2:uint256=unsafe_div(((2*10**18)*N_COINS)*K0,_g1k0)# calculate neg_fprime. here K0 > 0 is being validated (safediv).neg_fprime:uint256=(S+unsafe_div(S*mul2,10**18))+mul1*N_COINS/K0-unsafe_div(mul2*D,10**18)# D -= f / fprime; neg_fprime safediv being validatedD_plus:uint256=D*(neg_fprime+S)/neg_fprimeD_minus:uint256=unsafe_div(D*D,neg_fprime)if10**18>K0:D_minus+=unsafe_div(unsafe_div(D*unsafe_div(mul1,neg_fprime),10**18)*unsafe_sub(10**18,K0),K0)else:D_minus-=unsafe_div(unsafe_div(D*unsafe_div(mul1,neg_fprime),10**18)*unsafe_sub(K0,10**18),K0)ifD_plus>D_minus:D=unsafe_sub(D_plus,D_minus)else:D=unsafe_div(unsafe_sub(D_minus,D_plus),2)ifD>D_prev:diff=unsafe_sub(D,D_prev)else:diff=unsafe_sub(D_prev,D)ifdiff*10**14<max(10**16,D):# Could reduce precision for gas efficiency herefor_xinx:frac:uint256=_x*10**18/Dassert(frac>=10**16-1)and(frac<10**20+1)# dev: unsafe values x[i]returnDraise"Did not converge"@external@puredefget_y(_ANN:uint256,_gamma:uint256,_x:uint256[N_COINS],_D:uint256,i:uint256)->uint256[2]:# Safety checksassert_ANN>MIN_A-1and_ANN<MAX_A+1# dev: unsafe values Aassert_gamma>MIN_GAMMA-1and_gamma<MAX_GAMMA+1# dev: unsafe values gammaassert_D>10**17-1and_D<10**15*10**18+1# dev: unsafe values DANN:int256=convert(_ANN,int256)gamma:int256=convert(_gamma,int256)D:int256=convert(_D,int256)x_j:int256=convert(_x[1-i],int256)gamma2:int256=unsafe_mul(gamma,gamma)# savediv by x_j done here:y:int256=D**2/(x_j*N_COINS**2)# K0_i: int256 = (10**18 * N_COINS) * x_j / DK0_i:int256=unsafe_div(10**18*N_COINS*x_j,D)assert(K0_i>10**16*N_COINS-1)and(K0_i<10**20*N_COINS+1)# dev: unsafe values x[i]ann_gamma2:int256=ANN*gamma2# a = 10**36 / N_COINS**2a:int256=10**32# b = ANN*D*gamma2/4/10000/x_j/10**4 - 10**32*3 - 2*gamma*10**14b:int256=(D*ann_gamma2/400000000/x_j-convert(unsafe_mul(10**32,3),int256)-unsafe_mul(unsafe_mul(2,gamma),10**14))# c = 10**32*3 + 4*gamma*10**14 + gamma2/10**4 + 4*ANN*gamma2*x_j/D/10000/4/10**4 - 4*ANN*gamma2/10000/4/10**4c:int256=(unsafe_mul(10**32,convert(3,int256))+unsafe_mul(unsafe_mul(4,gamma),10**14)+unsafe_div(gamma2,10**4)+unsafe_div(unsafe_div(unsafe_mul(4,ann_gamma2),400000000)*x_j,D)-unsafe_div(unsafe_mul(4,ann_gamma2),400000000))# d = -(10**18+gamma)**2 / 10**4d:int256=-unsafe_div(unsafe_add(10**18,gamma)**2,10**4)# delta0: int256 = 3*a*c/b - bdelta0:int256=3*a*c/b-b# safediv by b# delta1: int256 = 9*a*c/b - 2*b - 27*a**2/b*d/bdelta1:int256=3*delta0+b-27*a**2/b*d/bdivider:int256=1threshold:int256=min(min(abs(delta0),abs(delta1)),a)ifthreshold>10**48:divider=10**30elifthreshold>10**46:divider=10**28elifthreshold>10**44:divider=10**26elifthreshold>10**42:divider=10**24elifthreshold>10**40:divider=10**22elifthreshold>10**38:divider=10**20elifthreshold>10**36:divider=10**18elifthreshold>10**34:divider=10**16elifthreshold>10**32:divider=10**14elifthreshold>10**30:divider=10**12elifthreshold>10**28:divider=10**10elifthreshold>10**26:divider=10**8elifthreshold>10**24:divider=10**6elifthreshold>10**20:divider=10**2a=unsafe_div(a,divider)b=unsafe_div(b,divider)c=unsafe_div(c,divider)d=unsafe_div(d,divider)# delta0 = 3*a*c/b - b: here we can do more unsafe ops now:delta0=unsafe_div(unsafe_mul(unsafe_mul(3,a),c),b)-b# delta1 = 9*a*c/b - 2*b - 27*a**2/b*d/bdelta1=3*delta0+b-unsafe_div(unsafe_mul(unsafe_div(unsafe_mul(27,a**2),b),d),b)# sqrt_arg: int256 = delta1**2 + 4*delta0**2/b*delta0sqrt_arg:int256=delta1**2+unsafe_mul(unsafe_div(4*delta0**2,b),delta0)sqrt_val:int256=0ifsqrt_arg>0:sqrt_val=convert(isqrt(convert(sqrt_arg,uint256)),int256)else:return[self._newton_y(_ANN,_gamma,_x,_D,i),0]b_cbrt:int256=0ifb>0:b_cbrt=convert(self._cbrt(convert(b,uint256)),int256)else:b_cbrt=-convert(self._cbrt(convert(-b,uint256)),int256)second_cbrt:int256=0ifdelta1>0:# second_cbrt = convert(self._cbrt(convert((delta1 + sqrt_val), uint256) / 2), int256)second_cbrt=convert(self._cbrt(convert(unsafe_add(delta1,sqrt_val),uint256)/2),int256)else:# second_cbrt = -convert(self._cbrt(convert(unsafe_sub(sqrt_val, delta1), uint256) / 2), int256)second_cbrt=-convert(self._cbrt(unsafe_div(convert(unsafe_sub(sqrt_val,delta1),uint256),2)),int256)# C1: int256 = b_cbrt**2/10**18*second_cbrt/10**18C1:int256=unsafe_div(unsafe_mul(unsafe_div(b_cbrt**2,10**18),second_cbrt),10**18)# root: int256 = (10**18*C1 - 10**18*b - 10**18*b*delta0/C1)/(3*a), keep 2 safe ops here.root:int256=(unsafe_mul(10**18,C1)-unsafe_mul(10**18,b)-unsafe_mul(10**18,b)/C1*delta0)/unsafe_mul(3,a)# y_out: uint256[2] = [# convert(D**2/x_j*root/4/10**18, uint256), # <--- y# convert(root, uint256) # <----------------------- K0Prev# ]y_out:uint256[2]=[convert(unsafe_div(unsafe_div(unsafe_mul(unsafe_div(D**2,x_j),root),4),10**18),uint256),convert(root,uint256)]frac:uint256=unsafe_div(y_out[0]*10**18,_D)assert(frac>=10**16-1)and(frac<10**20+1)# dev: unsafe value for yreturny_out
Getter for the received amount of coin j for swapping in dx amount of coin i. This method includes fees.
Returns: exact amount of output coin j (uint256).
Input
Type
Description
i
uint256
Index of input token.
j
uint256
Index of output token.
dx
uint256
Amount of input tokens.
Source code
@external@viewdefget_dy(i:uint256,j:uint256,dx:uint256)->uint256:""" @notice Get amount of coin[j] tokens received for swapping in dx amount of coin[i] @dev Includes fee. @param i index of input token. Check pool.coins(i) to get coin address at ith index @param j index of output token @param dx amount of input coin[i] tokens @return uint256 Exact amount of output j tokens for dx amount of i input tokens. """view_contract:address=factory.views_implementation()returnViews(view_contract).get_dy(i,j,dx,self)
@external@viewdefget_dy(i:uint256,j:uint256,dx:uint256,swap:address)->uint256:dy:uint256=0xp:uint256[N_COINS]=empty(uint256[N_COINS])# dy = (get_y(x + dx) - y) * (1 - fee)dy,xp=self._get_dy_nofee(i,j,dx,swap)dy-=Curve(swap).fee_calc(xp)*dy/10**10returndy@internal@viewdef_get_dy_nofee(i:uint256,j:uint256,dx:uint256,swap:address)->(uint256,uint256[N_COINS]):asserti!=jandi<N_COINSandj<N_COINS,"coin index out of range"assertdx>0,"do not exchange 0 coins"math:Math=Curve(swap).MATH()xp:uint256[N_COINS]=empty(uint256[N_COINS])precisions:uint256[N_COINS]=empty(uint256[N_COINS])price_scale:uint256=0D:uint256=0token_supply:uint256=0A:uint256=0gamma:uint256=0xp,D,token_supply,price_scale,A,gamma,precisions=self._prep_calc(swap)# adjust xp with input dxxp[i]+=dxxp=[xp[0]*precisions[0],xp[1]*price_scale*precisions[1]/PRECISION]y_out:uint256[2]=math.get_y(A,gamma,xp,D,j)dy:uint256=xp[j]-y_out[0]-1xp[j]=y_out[0]ifj>0:dy=dy*PRECISION/price_scaledy/=precisions[j]returndy,xp
Getter for the required amount of coin i to input for swapping out dy amount of token j.
Returns: amount of input coin i needed (uint256).
Input
Type
Description
i
uint256
Index of input token.
j
uint256
Index of output token.
dy
uint256
Amount of output tokens.
Source code
@external@viewdefget_dx(i:uint256,j:uint256,dy:uint256)->uint256:""" @notice Get amount of coin[i] tokens to input for swapping out dy amount of coin[j] @dev This is an approximate method, and returns estimates close to the input amount. Expensive to call on-chain. @param i index of input token. Check pool.coins(i) to get coin address at ith index @param j index of output token @param dy amount of input coin[j] tokens received @return uint256 Approximate amount of input i tokens to get dy amount of j tokens. """view_contract:address=factory.views_implementation()returnViews(view_contract).get_dx(i,j,dy,self)
@view@externaldefget_dx(i:uint256,j:uint256,dy:uint256,swap:address)->uint256:dx:uint256=0xp:uint256[N_COINS]=empty(uint256[N_COINS])fee_dy:uint256=0_dy:uint256=dy# for more precise dx (but never exact), increase num loopsforkinrange(5):dx,xp=self._get_dx_fee(i,j,_dy,swap)fee_dy=Curve(swap).fee_calc(xp)*_dy/10**10_dy=dy+fee_dy+1returndx@internal@viewdef_get_dx_fee(i:uint256,j:uint256,dy:uint256,swap:address)->(uint256,uint256[N_COINS]):# here, dy must include fees (and 1 wei offset)asserti!=jandi<N_COINSandj<N_COINS,"coin index out of range"assertdy>0,"do not exchange out 0 coins"math:Math=Curve(swap).MATH()xp:uint256[N_COINS]=empty(uint256[N_COINS])precisions:uint256[N_COINS]=empty(uint256[N_COINS])price_scale:uint256=0D:uint256=0token_supply:uint256=0A:uint256=0gamma:uint256=0xp,D,token_supply,price_scale,A,gamma,precisions=self._prep_calc(swap)# adjust xp with output dy. dy contains fee element, which we handle later# (hence this internal method is called _get_dx_fee)xp[j]-=dyxp=[xp[0]*precisions[0],xp[1]*price_scale*precisions[1]/PRECISION]x_out:uint256[2]=math.get_y(A,gamma,xp,D,i)dx:uint256=x_out[0]-xp[i]xp[i]=x_out[0]ifi>0:dx=dx*PRECISION/price_scaledx/=precisions[i]returndx,xp
Getter for the charged exchange fee by the pool at the current state.
Returns: fee (uint256).
Input
Type
Description
xp
uint256[N_COINS]
Pool balances multiplied by the coin precisions.
Source code
@external@viewdeffee_calc(xp:uint256[N_COINS])->uint256:# <----- For by view contract.""" @notice Returns the fee charged by the pool at current state. @param xp The current balances of the pool multiplied by coin precisions. @return uint256 Fee value. """returnself._fee(xp)@internal@viewdef_fee(xp:uint256[N_COINS])->uint256:fee_params:uint256[3]=self._unpack_3(self.packed_fee_params)f:uint256=xp[0]+xp[1]f=fee_params[2]*10**18/(fee_params[2]+10**18-(10**18*N_COINS**N_COINS)*xp[0]/f*xp[1]/f)returnunsafe_div(fee_params[0]*f+fee_params[1]*(10**18-f),10**18)
The twocrypto-ng implementation utilizes the usual methods to add and remove liquidity.
Adding liquidity can be done via the add_liquidity method. The code uses a list of unsigned integers uint256[N_COINS] as input for the pools underlying tokens to add. Any proportion is possible. For example, adding fully single-sided can be done using [0, 1e18] or [1e18, 0], but again, any variation is possible, e.g., [1e18, 1e19].
Removing liquidity can be done in two different ways. Either withdraw the underlying assets in a balanced proportion using the remove_liquidity method or fully single-sided in a single underlying token using remove_liquidity_one_coin.
Function to add liquidity to the pool and mint the corresponding LP tokens.
Returns: amount of LP tokens received (uint256).
Emits: AddLiquidity
Input
Type
Description
amounts
uint256[N_COINS]
Amount of each coin to add.
min_mint_amount
uint256
Minimum amount of LP tokens to mint.
receiver
address
Receiver of the LP tokens; defaults to msg.sender.
Source code
eventAddLiquidity:provider:indexed(address)token_amounts:uint256[N_COINS]fee:uint256token_supply:uint256packed_price_scale:uint256@external@nonreentrant("lock")defadd_liquidity(amounts:uint256[N_COINS],min_mint_amount:uint256,receiver:address=msg.sender)->uint256:""" @notice Adds liquidity into the pool. @param amounts Amounts of each coin to add. @param min_mint_amount Minimum amount of LP to mint. @param receiver Address to send the LP tokens to. Default is msg.sender @return uint256 Amount of LP tokens received by the `receiver """A_gamma:uint256[2]=self._A_gamma()xp:uint256[N_COINS]=self.balancesamountsp:uint256[N_COINS]=empty(uint256[N_COINS])d_token:uint256=0d_token_fee:uint256=0old_D:uint256=0assertamounts[0]+amounts[1]>0# dev: no coins to add# --------------------- Get prices, balances -----------------------------price_scale:uint256=self.cached_price_scale# -------------------------------------- Update balances and calculate xp.xp_old:uint256[N_COINS]=xpamounts_received:uint256[N_COINS]=empty(uint256[N_COINS])########################## TRANSFER IN <-------foriinrange(N_COINS):ifamounts[i]>0:# Updates self.balances here:amounts_received[i]=self._transfer_in(i,amounts[i],msg.sender,False,# <--------------------- Disable optimistic transfers.)xp[i]=xp[i]+amounts_received[i]xp=[xp[0]*PRECISIONS[0],unsafe_div(xp[1]*price_scale*PRECISIONS[1],PRECISION)]xp_old=[xp_old[0]*PRECISIONS[0],unsafe_div(xp_old[1]*price_scale*PRECISIONS[1],PRECISION)]foriinrange(N_COINS):ifamounts_received[i]>0:amountsp[i]=xp[i]-xp_old[i]# -------------------- Calculate LP tokens to mint -----------------------ifself.future_A_gamma_time>block.timestamp:# <--- A_gamma is ramping.# ----- Recalculate the invariant if A or gamma are undergoing a ramp.old_D=MATH.newton_D(A_gamma[0],A_gamma[1],xp_old,0)else:old_D=self.DD:uint256=MATH.newton_D(A_gamma[0],A_gamma[1],xp,0)token_supply:uint256=self.totalSupplyifold_D>0:d_token=token_supply*D/old_D-token_supplyelse:d_token=self.get_xcp(D,price_scale)# <----- Making initial virtual price equal to 1.assertd_token>0# dev: nothing mintedifold_D>0:d_token_fee=(self._calc_token_fee(amountsp,xp)*d_token/10**10+1)d_token-=d_token_feetoken_supply+=d_tokenself.mint(receiver,d_token)self.admin_lp_virtual_balance+=unsafe_div(ADMIN_FEE*d_token_fee,10**10)price_scale=self.tweak_price(A_gamma,xp,D,0)else:# (re)instatiating an empty pool:self.D=Dself.virtual_price=10**18self.xcp_profit=10**18self.xcp_profit_a=10**18# Initialise xcp oracle here:self.cached_xcp_oracle=d_token# <--- virtual_price * totalSupply / 10**18self.mint(receiver,d_token)assertd_token>=min_mint_amount,"Slippage"# ---------------------------------------------- Log and claim admin fees.logAddLiquidity(receiver,amounts_received,d_token_fee,token_supply,price_scale)returnd_token
@external@viewdefnewton_D(ANN:uint256,gamma:uint256,x_unsorted:uint256[N_COINS],K0_prev:uint256=0)->uint256:""" Finding the invariant using Newton method. ANN is higher by the factor A_MULTIPLIER ANN is already A * N**N """# Safety checksassertANN>MIN_A-1andANN<MAX_A+1# dev: unsafe values Aassertgamma>MIN_GAMMA-1andgamma<MAX_GAMMA+1# dev: unsafe values gamma# Initial value of invariant D is that for constant-product invariantx:uint256[N_COINS]=x_unsortedifx[0]<x[1]:x=[x_unsorted[1],x_unsorted[0]]assertx[0]>10**9-1andx[0]<10**15*10**18+1# dev: unsafe values x[0]assertunsafe_div(x[1]*10**18,x[0])>10**14-1# dev: unsafe values x[i] (input)S:uint256=unsafe_add(x[0],x[1])# can unsafe add here because we checked x[0] boundsD:uint256=0ifK0_prev==0:D=N_COINS*isqrt(unsafe_mul(x[0],x[1]))else:# D = isqrt(x[0] * x[1] * 4 / K0_prev * 10**18)D=isqrt(unsafe_mul(unsafe_div(unsafe_mul(unsafe_mul(4,x[0]),x[1]),K0_prev),10**18))ifS<D:D=S__g1k0:uint256=gamma+10**18diff:uint256=0foriinrange(255):D_prev:uint256=DassertD>0# Unsafe division by D and D_prev is now safe# K0: uint256 = 10**18# for _x in x:# K0 = K0 * _x * N_COINS / D# collapsed for 2 coinsK0:uint256=unsafe_div(unsafe_div((10**18*N_COINS**2)*x[0],D)*x[1],D)_g1k0:uint256=__g1k0if_g1k0>K0:_g1k0=unsafe_add(unsafe_sub(_g1k0,K0),1)# > 0else:_g1k0=unsafe_add(unsafe_sub(K0,_g1k0),1)# > 0# D / (A * N**N) * _g1k0**2 / gamma**2mul1:uint256=unsafe_div(unsafe_div(unsafe_div(10**18*D,gamma)*_g1k0,gamma)*_g1k0*A_MULTIPLIER,ANN)# 2*N*K0 / _g1k0mul2:uint256=unsafe_div(((2*10**18)*N_COINS)*K0,_g1k0)# calculate neg_fprime. here K0 > 0 is being validated (safediv).neg_fprime:uint256=(S+unsafe_div(S*mul2,10**18))+mul1*N_COINS/K0-unsafe_div(mul2*D,10**18)# D -= f / fprime; neg_fprime safediv being validatedD_plus:uint256=D*(neg_fprime+S)/neg_fprimeD_minus:uint256=unsafe_div(D*D,neg_fprime)if10**18>K0:D_minus+=unsafe_div(unsafe_div(D*unsafe_div(mul1,neg_fprime),10**18)*unsafe_sub(10**18,K0),K0)else:D_minus-=unsafe_div(unsafe_div(D*unsafe_div(mul1,neg_fprime),10**18)*unsafe_sub(K0,10**18),K0)ifD_plus>D_minus:D=unsafe_sub(D_plus,D_minus)else:D=unsafe_div(unsafe_sub(D_minus,D_plus),2)ifD>D_prev:diff=unsafe_sub(D,D_prev)else:diff=unsafe_sub(D_prev,D)ifdiff*10**14<max(10**16,D):# Could reduce precision for gas efficiency herefor_xinx:frac:uint256=_x*10**18/Dassert(frac>=10**16-1)and(frac<10**20+1)# dev: unsafe values x[i]returnDraise"Did not converge"
Function to calculate the charged fee on amounts when adding liquidity.
Returns: fee (uint256).
Input
Type
Description
amounts
uint256[N_COINS]
Amount of coins added to the pool.
xp
uint256[N_COINS]
Pool balances multiplied by the coin precisions.
Source code
@external@viewdefcalc_token_fee(amounts:uint256[N_COINS],xp:uint256[N_COINS])->uint256:""" @notice Returns the fee charged on the given amounts for add_liquidity. @param amounts The amounts of coins being added to the pool. @param xp The current balances of the pool multiplied by coin precisions. @return uint256 Fee charged. """returnself._calc_token_fee(amounts,xp)@view@internaldef_calc_token_fee(amounts:uint256[N_COINS],xp:uint256[N_COINS])->uint256:# fee = sum(amounts_i - avg(amounts)) * fee' / sum(amounts)fee:uint256=unsafe_div(unsafe_mul(self._fee(xp),N_COINS),unsafe_mul(4,unsafe_sub(N_COINS,1)))S:uint256=0for_xinamounts:S+=_xavg:uint256=unsafe_div(S,N_COINS)Sdiff:uint256=0for_xinamounts:if_x>avg:Sdiff+=unsafe_sub(_x,avg)else:Sdiff+=unsafe_sub(avg,_x)returnfee*Sdiff/S+NOISE_FEE
In case of any issues that result in a malfunctioning AMM state, users can safely withdraw liquidity using remove_liquidity. Withdrawal is based on balances proportional to the AMM balances, as this function does not perform complex math.
Function to remove liquidity from the pool and burn _amount of LP tokens. When removing liquidity with this function, no fees are charged as the coins are withdrawn in balanced proportions. This function also updates the xcp_oracle since liquidity was removed.
Returns: withdrawn balances (uint256[N_COINS]).
Emits: RemoveLiquidity
Input
Type
Description
_amount
uint256
Amount of LP tokens to burn.
min_amounts
uint256[N_COINS]
Minimum amounts of tokens to withdraw.
receiver
address
Receiver of the coins; defaults to msg.sender.
Source code
eventRemoveLiquidity:provider:indexed(address)token_amounts:uint256[N_COINS]token_supply:uint256@external@nonreentrant("lock")defremove_liquidity(_amount:uint256,min_amounts:uint256[N_COINS],receiver:address=msg.sender,)->uint256[N_COINS]:""" @notice This withdrawal method is very safe, does no complex math since tokens are withdrawn in balanced proportions. No fees are charged. @param _amount Amount of LP tokens to burn @param min_amounts Minimum amounts of tokens to withdraw @param receiver Address to send the withdrawn tokens to @return uint256[3] Amount of pool tokens received by the `receiver` """amount:uint256=_amountbalances:uint256[N_COINS]=self.balanceswithdraw_amounts:uint256[N_COINS]=empty(uint256[N_COINS])# -------------------------------------------------------- Burn LP tokens.total_supply:uint256=self.totalSupply# <------ Get totalSupply beforeself.burnFrom(msg.sender,_amount)# ---- reducing it with self.burnFrom.# There are two cases for withdrawing tokens from the pool.# Case 1. Withdrawal does not empty the pool.# In this situation, D is adjusted proportional to the amount of# LP tokens burnt. ERC20 tokens transferred is proportional# to : (AMM balance * LP tokens in) / LP token total supply# Case 2. Withdrawal empties the pool.# In this situation, all tokens are withdrawn and the invariant# is reset.ifamount==total_supply:# <----------------------------------- Case 2.foriinrange(N_COINS):withdraw_amounts[i]=balances[i]else:# <-------------------------------------------------------- Case 1.amount-=1# <---- To prevent rounding errors, favor LPs a tiny bit.foriinrange(N_COINS):withdraw_amounts[i]=balances[i]*amount/total_supplyassertwithdraw_amounts[i]>=min_amounts[i]D:uint256=self.Dself.D=D-unsafe_div(D*amount,total_supply)# <----------- Reduce D# proportional to the amount of tokens leaving. Since withdrawals are# balanced, this is a simple subtraction. If amount == total_supply,# D will be 0.# ---------------------------------- Transfers ---------------------------foriinrange(N_COINS):# _transfer_out updates self.balances here. Update to state occurs# before external calls:self._transfer_out(i,withdraw_amounts[i],receiver)logRemoveLiquidity(msg.sender,withdraw_amounts,total_supply-_amount)# --------------------------- Upkeep xcp oracle --------------------------# Update xcp since liquidity was removed:xp:uint256[N_COINS]=self.xp(self.balances,self.cached_price_scale)last_xcp:uint256=isqrt(xp[0]*xp[1])# <----------- Cache it for now.last_timestamp:uint256[2]=self._unpack_2(self.last_timestamp)iflast_timestamp[1]<block.timestamp:cached_xcp_oracle:uint256=self.cached_xcp_oraclealpha:uint256=MATH.wad_exp(-convert(unsafe_div(unsafe_sub(block.timestamp,last_timestamp[1])*10**18,self.xcp_ma_time# <---------- xcp ma time has is longer.),int256,))self.cached_xcp_oracle=unsafe_div(last_xcp*(10**18-alpha)+cached_xcp_oracle*alpha,10**18)last_timestamp[1]=block.timestamp# Pack and store timestamps:self.last_timestamp=self._pack_2(last_timestamp[0],last_timestamp[1])# Store last xcpself.last_xcp=last_xcpreturnwithdraw_amounts
@external@puredefwad_exp(x:int256)->int256:""" @dev Calculates the natural exponential function of a signed integer with a precision of 1e18. @notice Note that this function consumes about 810 gas units. The implementation is inspired by Remco Bloemen's implementation under the MIT license here: https://xn--2-umb.com/22/exp-ln. @param x The 32-byte variable. @return int256 The 32-byte calculation result. """value:int256=x# If the result is `< 0.5`, we return zero. This happens when we have the following:# "x <= floor(log(0.5e18) * 1e18) ~ -42e18".if(x<=-42_139_678_854_452_767_551):returnempty(int256)# When the result is "> (2 ** 255 - 1) / 1e18" we cannot represent it as a signed integer.# This happens when "x >= floor(log((2 ** 255 - 1) / 1e18) * 1e18) ~ 135".assertx<135_305_999_368_893_231_589,"Math: wad_exp overflow"# `x` is now in the range "(-42, 136) * 1e18". Convert to "(-42, 136) * 2 ** 96" for higher# intermediate precision and a binary base. This base conversion is a multiplication with# "1e18 / 2 ** 96 = 5 ** 18 / 2 ** 78".value=unsafe_div(x<<78,5**18)# Reduce the range of `x` to "(-½ ln 2, ½ ln 2) * 2 ** 96" by factoring out powers of two# so that "exp(x) = exp(x') * 2 ** k", where `k` is a signer integer. Solving this gives# "k = round(x / log(2))" and "x' = x - k * log(2)". Thus, `k` is in the range "[-61, 195]".k:int256=unsafe_add(unsafe_div(value<<96,54_916_777_467_707_473_351_141_471_128),2**95)>>96value=unsafe_sub(value,unsafe_mul(k,54_916_777_467_707_473_351_141_471_128))# Evaluate using a "(6, 7)"-term rational approximation. Since `p` is monic,# we will multiply by a scaling factor later.y:int256=unsafe_add(unsafe_mul(unsafe_add(value,1_346_386_616_545_796_478_920_950_773_328),value)>>96,57_155_421_227_552_351_082_224_309_758_442)p:int256=unsafe_add(unsafe_mul(unsafe_add(unsafe_mul(unsafe_sub(unsafe_add(y,value),94_201_549_194_550_492_254_356_042_504_812),y)>>96,\
28_719_021_644_029_726_153_956_944_680_412_240),value),4_385_272_521_454_847_904_659_076_985_693_276<<96)# We leave `p` in the "2 ** 192" base so that we do not have to scale it up# again for the division.q:int256=unsafe_add(unsafe_mul(unsafe_sub(value,2_855_989_394_907_223_263_936_484_059_900),value)>>96,50_020_603_652_535_783_019_961_831_881_945)q=unsafe_sub(unsafe_mul(q,value)>>96,533_845_033_583_426_703_283_633_433_725_380)q=unsafe_add(unsafe_mul(q,value)>>96,3_604_857_256_930_695_427_073_651_918_091_429)q=unsafe_sub(unsafe_mul(q,value)>>96,14_423_608_567_350_463_180_887_372_962_807_573)q=unsafe_add(unsafe_mul(q,value)>>96,26_449_188_498_355_588_339_934_803_723_976_023)# The polynomial `q` has no zeros in the range because all its roots are complex.# No scaling is required, as `p` is already "2 ** 96" too large. Also,# `r` is in the range "(0.09, 0.25) * 2**96" after the division.r:int256=unsafe_div(p,q)# To finalise the calculation, we have to multiply `r` by:# - the scale factor "s = ~6.031367120",# - the factor "2 ** k" from the range reduction, and# - the factor "1e18 / 2 ** 96" for the base conversion.# We do this all at once, with an intermediate result in "2**213" base,# so that the final right shift always gives a positive value.# Note that to circumvent Vyper's safecast feature for the potentially# negative parameter value `r`, we first convert `r` to `bytes32` and# subsequently to `uint256`. Remember that the EVM default behaviour is# to use two's complement representation to handle signed integers.returnconvert(unsafe_mul(convert(convert(r,bytes32),uint256),3_822_833_074_963_236_453_042_738_258_902_158_003_155_416_615_667)>>\
convert(unsafe_sub(195,k),uint256),int256)
Function to burn token_amount LP tokens and withdraw liquidity in a single token i.
Returns: amount of coins withdrawn (uint256).
Emits: RemoveLiquidityOne
Input
Type
Description
token_amount
uint256
Amount of LP tokens to burn.
i
uint256
Index of the token to withdraw.
min_amount
uint256
Minimum amount of token to withdraw.
receiver
address
Receiver of the coins; defaults to msg.sender.
Source code
eventRemoveLiquidityOne:provider:indexed(address)token_amount:uint256coin_index:uint256coin_amount:uint256approx_fee:uint256packed_price_scale:uint256@external@nonreentrant("lock")defremove_liquidity_one_coin(token_amount:uint256,i:uint256,min_amount:uint256,receiver:address=msg.sender)->uint256:""" @notice Withdraw liquidity in a single token. Involves fees (lower than swap fees). @dev This operation also involves an admin fee claim. @param token_amount Amount of LP tokens to burn @param i Index of the token to withdraw @param min_amount Minimum amount of token to withdraw. @param receiver Address to send the withdrawn tokens to @return Amount of tokens at index i received by the `receiver` """self._claim_admin_fees()# <--------- Auto-claim admin fees occasionally.A_gamma:uint256[2]=self._A_gamma()dy:uint256=0D:uint256=0p:uint256=0xp:uint256[N_COINS]=empty(uint256[N_COINS])approx_fee:uint256=0# ------------------------------------------------------------------------dy,D,xp,approx_fee=self._calc_withdraw_one_coin(A_gamma,token_amount,i,(self.future_A_gamma_time>block.timestamp),# <------- During ramps)# we need to update D.assertdy>=min_amount,"Slippage"# ---------------------------- State Updates -----------------------------# Burn user's tokens:self.burnFrom(msg.sender,token_amount)packed_price_scale:uint256=self.tweak_price(A_gamma,xp,D,0)# Safe to use D from _calc_withdraw_one_coin here ---^# ------------------------- Transfers ------------------------------------# _transfer_out updates self.balances here. Update to state occurs before# external calls:self._transfer_out(i,dy,receiver)logRemoveLiquidityOne(msg.sender,token_amount,i,dy,approx_fee,packed_price_scale)returndy@internal@viewdef_calc_withdraw_one_coin(A_gamma:uint256[2],token_amount:uint256,i:uint256,update_D:bool,)->(uint256,uint256,uint256[N_COINS],uint256):token_supply:uint256=self.totalSupplyasserttoken_amount<=token_supply# dev: token amount more than supplyasserti<N_COINS# dev: coin out of rangexx:uint256[N_COINS]=self.balancesD0:uint256=0# -------------------------- Calculate D0 and xp -------------------------price_scale_i:uint256=self.cached_price_scale*PRECISIONS[1]xp:uint256[N_COINS]=[xx[0]*PRECISIONS[0],unsafe_div(xx[1]*price_scale_i,PRECISION)]ifi==0:price_scale_i=PRECISION*PRECISIONS[0]ifupdate_D:# <-------------- D is updated if pool is undergoing a ramp.D0=MATH.newton_D(A_gamma[0],A_gamma[1],xp,0)else:D0=self.DD:uint256=D0# -------------------------------- Fee Calc ------------------------------# Charge fees on D. Roughly calculate xp[i] after withdrawal and use that# to calculate fee. Precision is not paramount here: we just want a# behavior where the higher the imbalance caused the more fee the AMM# charges.# xp is adjusted assuming xp[0] ~= xp[1] ~= x[2], which is usually not the# case. We charge self._fee(xp), where xp is an imprecise adjustment post# withdrawal in one coin. If the withdraw is too large: charge max fee by# default. This is because the fee calculation will otherwise underflow.xp_imprecise:uint256[N_COINS]=xpxp_correction:uint256=xp[i]*N_COINS*token_amount/token_supplyfee:uint256=self._unpack_3(self.packed_fee_params)[1]# <- self.out_fee.ifxp_correction<xp_imprecise[i]:xp_imprecise[i]-=xp_correctionfee=self._fee(xp_imprecise)dD:uint256=unsafe_div(token_amount*D,token_supply)D_fee:uint256=fee*dD/(2*10**10)+1# <------- Actual fee on D.# --------- Calculate `approx_fee` (assuming balanced state) in ith token.# -------------------------------- We only need this for fee in the event.approx_fee:uint256=N_COINS*D_fee*xx[i]/D# <------------------<---------- TODO: Check math.# ------------------------------------------------------------------------D-=(dD-D_fee)# <----------------------------------- Charge fee on D.# --------------------------------- Calculate `y_out`` with `(D - D_fee)`.y:uint256=MATH.get_y(A_gamma[0],A_gamma[1],xp,D,i)[0]dy:uint256=(xp[i]-y)*PRECISION/price_scale_ixp[i]=yreturndy,D,xp,approx_fee@view@internaldef_A_gamma()->uint256[2]:t1:uint256=self.future_A_gamma_timeA_gamma_1:uint256=self.future_A_gammagamma1:uint256=A_gamma_1&2**128-1A1:uint256=A_gamma_1>>128ifblock.timestamp<t1:# --------------- Handle ramping up and down of A --------------------A_gamma_0:uint256=self.initial_A_gammat0:uint256=self.initial_A_gamma_timet1-=t0t0=block.timestamp-t0t2:uint256=t1-t0A1=((A_gamma_0>>128)*t2+A1*t0)/t1gamma1=((A_gamma_0&2**128-1)*t2+gamma1*t0)/t1return[A1,gamma1]
@external@viewdefnewton_D(ANN:uint256,gamma:uint256,x_unsorted:uint256[N_COINS],K0_prev:uint256=0)->uint256:""" Finding the invariant using Newton method. ANN is higher by the factor A_MULTIPLIER ANN is already A * N**N """# Safety checksassertANN>MIN_A-1andANN<MAX_A+1# dev: unsafe values Aassertgamma>MIN_GAMMA-1andgamma<MAX_GAMMA+1# dev: unsafe values gamma# Initial value of invariant D is that for constant-product invariantx:uint256[N_COINS]=x_unsortedifx[0]<x[1]:x=[x_unsorted[1],x_unsorted[0]]assertx[0]>10**9-1andx[0]<10**15*10**18+1# dev: unsafe values x[0]assertunsafe_div(x[1]*10**18,x[0])>10**14-1# dev: unsafe values x[i] (input)S:uint256=unsafe_add(x[0],x[1])# can unsafe add here because we checked x[0] boundsD:uint256=0ifK0_prev==0:D=N_COINS*isqrt(unsafe_mul(x[0],x[1]))else:# D = isqrt(x[0] * x[1] * 4 / K0_prev * 10**18)D=isqrt(unsafe_mul(unsafe_div(unsafe_mul(unsafe_mul(4,x[0]),x[1]),K0_prev),10**18))ifS<D:D=S__g1k0:uint256=gamma+10**18diff:uint256=0foriinrange(255):D_prev:uint256=DassertD>0# Unsafe division by D and D_prev is now safe# K0: uint256 = 10**18# for _x in x:# K0 = K0 * _x * N_COINS / D# collapsed for 2 coinsK0:uint256=unsafe_div(unsafe_div((10**18*N_COINS**2)*x[0],D)*x[1],D)_g1k0:uint256=__g1k0if_g1k0>K0:_g1k0=unsafe_add(unsafe_sub(_g1k0,K0),1)# > 0else:_g1k0=unsafe_add(unsafe_sub(K0,_g1k0),1)# > 0# D / (A * N**N) * _g1k0**2 / gamma**2mul1:uint256=unsafe_div(unsafe_div(unsafe_div(10**18*D,gamma)*_g1k0,gamma)*_g1k0*A_MULTIPLIER,ANN)# 2*N*K0 / _g1k0mul2:uint256=unsafe_div(((2*10**18)*N_COINS)*K0,_g1k0)# calculate neg_fprime. here K0 > 0 is being validated (safediv).neg_fprime:uint256=(S+unsafe_div(S*mul2,10**18))+mul1*N_COINS/K0-unsafe_div(mul2*D,10**18)# D -= f / fprime; neg_fprime safediv being validatedD_plus:uint256=D*(neg_fprime+S)/neg_fprimeD_minus:uint256=unsafe_div(D*D,neg_fprime)if10**18>K0:D_minus+=unsafe_div(unsafe_div(D*unsafe_div(mul1,neg_fprime),10**18)*unsafe_sub(10**18,K0),K0)else:D_minus-=unsafe_div(unsafe_div(D*unsafe_div(mul1,neg_fprime),10**18)*unsafe_sub(K0,10**18),K0)ifD_plus>D_minus:D=unsafe_sub(D_plus,D_minus)else:D=unsafe_div(unsafe_sub(D_minus,D_plus),2)ifD>D_prev:diff=unsafe_sub(D,D_prev)else:diff=unsafe_sub(D_prev,D)ifdiff*10**14<max(10**16,D):# Could reduce precision for gas efficiency herefor_xinx:frac:uint256=_x*10**18/Dassert(frac>=10**16-1)and(frac<10**20+1)# dev: unsafe values x[i]returnDraise"Did not converge"@external@puredefget_y(_ANN:uint256,_gamma:uint256,_x:uint256[N_COINS],_D:uint256,i:uint256)->uint256[2]:# Safety checksassert_ANN>MIN_A-1and_ANN<MAX_A+1# dev: unsafe values Aassert_gamma>MIN_GAMMA-1and_gamma<MAX_GAMMA+1# dev: unsafe values gammaassert_D>10**17-1and_D<10**15*10**18+1# dev: unsafe values DANN:int256=convert(_ANN,int256)gamma:int256=convert(_gamma,int256)D:int256=convert(_D,int256)x_j:int256=convert(_x[1-i],int256)gamma2:int256=unsafe_mul(gamma,gamma)# savediv by x_j done here:y:int256=D**2/(x_j*N_COINS**2)# K0_i: int256 = (10**18 * N_COINS) * x_j / DK0_i:int256=unsafe_div(10**18*N_COINS*x_j,D)assert(K0_i>10**16*N_COINS-1)and(K0_i<10**20*N_COINS+1)# dev: unsafe values x[i]ann_gamma2:int256=ANN*gamma2# a = 10**36 / N_COINS**2a:int256=10**32# b = ANN*D*gamma2/4/10000/x_j/10**4 - 10**32*3 - 2*gamma*10**14b:int256=(D*ann_gamma2/400000000/x_j-convert(unsafe_mul(10**32,3),int256)-unsafe_mul(unsafe_mul(2,gamma),10**14))# c = 10**32*3 + 4*gamma*10**14 + gamma2/10**4 + 4*ANN*gamma2*x_j/D/10000/4/10**4 - 4*ANN*gamma2/10000/4/10**4c:int256=(unsafe_mul(10**32,convert(3,int256))+unsafe_mul(unsafe_mul(4,gamma),10**14)+unsafe_div(gamma2,10**4)+unsafe_div(unsafe_div(unsafe_mul(4,ann_gamma2),400000000)*x_j,D)-unsafe_div(unsafe_mul(4,ann_gamma2),400000000))# d = -(10**18+gamma)**2 / 10**4d:int256=-unsafe_div(unsafe_add(10**18,gamma)**2,10**4)# delta0: int256 = 3*a*c/b - bdelta0:int256=3*a*c/b-b# safediv by b# delta1: int256 = 9*a*c/b - 2*b - 27*a**2/b*d/bdelta1:int256=3*delta0+b-27*a**2/b*d/bdivider:int256=1threshold:int256=min(min(abs(delta0),abs(delta1)),a)ifthreshold>10**48:divider=10**30elifthreshold>10**46:divider=10**28elifthreshold>10**44:divider=10**26elifthreshold>10**42:divider=10**24elifthreshold>10**40:divider=10**22elifthreshold>10**38:divider=10**20elifthreshold>10**36:divider=10**18elifthreshold>10**34:divider=10**16elifthreshold>10**32:divider=10**14elifthreshold>10**30:divider=10**12elifthreshold>10**28:divider=10**10elifthreshold>10**26:divider=10**8elifthreshold>10**24:divider=10**6elifthreshold>10**20:divider=10**2a=unsafe_div(a,divider)b=unsafe_div(b,divider)c=unsafe_div(c,divider)d=unsafe_div(d,divider)# delta0 = 3*a*c/b - b: here we can do more unsafe ops now:delta0=unsafe_div(unsafe_mul(unsafe_mul(3,a),c),b)-b# delta1 = 9*a*c/b - 2*b - 27*a**2/b*d/bdelta1=3*delta0+b-unsafe_div(unsafe_mul(unsafe_div(unsafe_mul(27,a**2),b),d),b)# sqrt_arg: int256 = delta1**2 + 4*delta0**2/b*delta0sqrt_arg:int256=delta1**2+unsafe_mul(unsafe_div(4*delta0**2,b),delta0)sqrt_val:int256=0ifsqrt_arg>0:sqrt_val=convert(isqrt(convert(sqrt_arg,uint256)),int256)else:return[self._newton_y(_ANN,_gamma,_x,_D,i),0]b_cbrt:int256=0ifb>0:b_cbrt=convert(self._cbrt(convert(b,uint256)),int256)else:b_cbrt=-convert(self._cbrt(convert(-b,uint256)),int256)second_cbrt:int256=0ifdelta1>0:# second_cbrt = convert(self._cbrt(convert((delta1 + sqrt_val), uint256) / 2), int256)second_cbrt=convert(self._cbrt(convert(unsafe_add(delta1,sqrt_val),uint256)/2),int256)else:# second_cbrt = -convert(self._cbrt(convert(unsafe_sub(sqrt_val, delta1), uint256) / 2), int256)second_cbrt=-convert(self._cbrt(unsafe_div(convert(unsafe_sub(sqrt_val,delta1),uint256),2)),int256)# C1: int256 = b_cbrt**2/10**18*second_cbrt/10**18C1:int256=unsafe_div(unsafe_mul(unsafe_div(b_cbrt**2,10**18),second_cbrt),10**18)# root: int256 = (10**18*C1 - 10**18*b - 10**18*b*delta0/C1)/(3*a), keep 2 safe ops here.root:int256=(unsafe_mul(10**18,C1)-unsafe_mul(10**18,b)-unsafe_mul(10**18,b)/C1*delta0)/unsafe_mul(3,a)# y_out: uint256[2] = [# convert(D**2/x_j*root/4/10**18, uint256), # <--- y# convert(root, uint256) # <----------------------- K0Prev# ]y_out:uint256[2]=[convert(unsafe_div(unsafe_div(unsafe_mul(unsafe_div(D**2,x_j),root),4),10**18),uint256),convert(root,uint256)]frac:uint256=unsafe_div(y_out[0]*10**18,_D)assert(frac>=10**16-1)and(frac<10**20+1)# dev: unsafe value for yreturny_out
Function to calculate the LP tokens to be minted or burned for depositing or removing amounts of coins. This method takes fees into consideration.
Returns: amount of LP tokens deposited or withdrawn (uint256).
Input
Type
Description
amounts
uint256[N_COINS]
Amounts of tokens being deposited or withdrawn.
deposit
bool
true for deposit, false for withdrawal.
Source code
interfaceFactory:defviews_implementation()->address:view@external@viewdefcalc_token_amount(amounts:uint256[N_COINS],deposit:bool)->uint256:""" @notice Calculate LP tokens minted or to be burned for depositing or removing `amounts` of coins @dev Includes fee. @param amounts Amounts of tokens being deposited or withdrawn @param deposit True if it is a deposit action, False if withdrawn. @return uint256 Amount of LP tokens deposited or withdrawn. """view_contract:address=factory.views_implementation()returnViews(view_contract).calc_token_amount(amounts,deposit,self)@external@viewdefcalc_token_fee(amounts:uint256[N_COINS],xp:uint256[N_COINS])->uint256:""" @notice Returns the fee charged on the given amounts for add_liquidity. @param amounts The amounts of coins being added to the pool. @param xp The current balances of the pool multiplied by coin precisions. @return uint256 Fee charged. """returnself._calc_token_fee(amounts,xp)@view@internaldef_calc_token_fee(amounts:uint256[N_COINS],xp:uint256[N_COINS])->uint256:# fee = sum(amounts_i - avg(amounts)) * fee' / sum(amounts)fee:uint256=unsafe_div(unsafe_mul(self._fee(xp),N_COINS),unsafe_mul(4,unsafe_sub(N_COINS,1)))S:uint256=0for_xinamounts:S+=_xavg:uint256=unsafe_div(S,N_COINS)Sdiff:uint256=0for_xinamounts:if_x>avg:Sdiff+=unsafe_sub(_x,avg)else:Sdiff+=unsafe_sub(avg,_x)returnfee*Sdiff/S+NOISE_FEE
Function to calculate the amount of output token i when burning token_amount of LP tokens. This method takes fees into consideration.
Returns: amount of tokens to receive (uint256).
Input
Type
Description
token_amount
uint256
Amount of LP tokens burned.
i
uint256
Index of the coin to withdraw.
Source code
@view@externaldefcalc_withdraw_one_coin(token_amount:uint256,i:uint256)->uint256:""" @notice Calculates output tokens with fee @param token_amount LP Token amount to burn @param i token in which liquidity is withdrawn @return uint256 Amount of ith tokens received for burning token_amount LP tokens. """returnself._calc_withdraw_one_coin(self._A_gamma(),token_amount,i,(self.future_A_gamma_time>block.timestamp))[0]@internal@viewdef_calc_withdraw_one_coin(A_gamma:uint256[2],token_amount:uint256,i:uint256,update_D:bool,)->(uint256,uint256,uint256[N_COINS],uint256):token_supply:uint256=self.totalSupplyasserttoken_amount<=token_supply# dev: token amount more than supplyasserti<N_COINS# dev: coin out of rangexx:uint256[N_COINS]=self.balancesD0:uint256=0# -------------------------- Calculate D0 and xp -------------------------price_scale_i:uint256=self.cached_price_scale*PRECISIONS[1]xp:uint256[N_COINS]=[xx[0]*PRECISIONS[0],unsafe_div(xx[1]*price_scale_i,PRECISION)]ifi==0:price_scale_i=PRECISION*PRECISIONS[0]ifupdate_D:# <-------------- D is updated if pool is undergoing a ramp.D0=MATH.newton_D(A_gamma[0],A_gamma[1],xp,0)else:D0=self.DD:uint256=D0# -------------------------------- Fee Calc ------------------------------# Charge fees on D. Roughly calculate xp[i] after withdrawal and use that# to calculate fee. Precision is not paramount here: we just want a# behavior where the higher the imbalance caused the more fee the AMM# charges.# xp is adjusted assuming xp[0] ~= xp[1] ~= x[2], which is usually not the# case. We charge self._fee(xp), where xp is an imprecise adjustment post# withdrawal in one coin. If the withdraw is too large: charge max fee by# default. This is because the fee calculation will otherwise underflow.xp_imprecise:uint256[N_COINS]=xpxp_correction:uint256=xp[i]*N_COINS*token_amount/token_supplyfee:uint256=self._unpack_3(self.packed_fee_params)[1]# <- self.out_fee.ifxp_correction<xp_imprecise[i]:xp_imprecise[i]-=xp_correctionfee=self._fee(xp_imprecise)dD:uint256=unsafe_div(token_amount*D,token_supply)D_fee:uint256=fee*dD/(2*10**10)+1# <------- Actual fee on D.# --------- Calculate `approx_fee` (assuming balanced state) in ith token.# -------------------------------- We only need this for fee in the event.approx_fee:uint256=N_COINS*D_fee*xx[i]/D# <------------------<---------- TODO: Check math.# ------------------------------------------------------------------------D-=(dD-D_fee)# <----------------------------------- Charge fee on D.# --------------------------------- Calculate `y_out`` with `(D - D_fee)`.y:uint256=MATH.get_y(A_gamma[0],A_gamma[1],xp,D,i)[0]dy:uint256=(xp[i]-y)*PRECISION/price_scale_ixp[i]=yreturndy,D,xp,approx_fee
@external@viewdefnewton_D(ANN:uint256,gamma:uint256,x_unsorted:uint256[N_COINS],K0_prev:uint256=0)->uint256:""" Finding the invariant using Newton method. ANN is higher by the factor A_MULTIPLIER ANN is already A * N**N """# Safety checksassertANN>MIN_A-1andANN<MAX_A+1# dev: unsafe values Aassertgamma>MIN_GAMMA-1andgamma<MAX_GAMMA+1# dev: unsafe values gamma# Initial value of invariant D is that for constant-product invariantx:uint256[N_COINS]=x_unsortedifx[0]<x[1]:x=[x_unsorted[1],x_unsorted[0]]assertx[0]>10**9-1andx[0]<10**15*10**18+1# dev: unsafe values x[0]assertunsafe_div(x[1]*10**18,x[0])>10**14-1# dev: unsafe values x[i] (input)S:uint256=unsafe_add(x[0],x[1])# can unsafe add here because we checked x[0] boundsD:uint256=0ifK0_prev==0:D=N_COINS*isqrt(unsafe_mul(x[0],x[1]))else:# D = isqrt(x[0] * x[1] * 4 / K0_prev * 10**18)D=isqrt(unsafe_mul(unsafe_div(unsafe_mul(unsafe_mul(4,x[0]),x[1]),K0_prev),10**18))ifS<D:D=S__g1k0:uint256=gamma+10**18diff:uint256=0foriinrange(255):D_prev:uint256=DassertD>0# Unsafe division by D and D_prev is now safe# K0: uint256 = 10**18# for _x in x:# K0 = K0 * _x * N_COINS / D# collapsed for 2 coinsK0:uint256=unsafe_div(unsafe_div((10**18*N_COINS**2)*x[0],D)*x[1],D)_g1k0:uint256=__g1k0if_g1k0>K0:_g1k0=unsafe_add(unsafe_sub(_g1k0,K0),1)# > 0else:_g1k0=unsafe_add(unsafe_sub(K0,_g1k0),1)# > 0# D / (A * N**N) * _g1k0**2 / gamma**2mul1:uint256=unsafe_div(unsafe_div(unsafe_div(10**18*D,gamma)*_g1k0,gamma)*_g1k0*A_MULTIPLIER,ANN)# 2*N*K0 / _g1k0mul2:uint256=unsafe_div(((2*10**18)*N_COINS)*K0,_g1k0)# calculate neg_fprime. here K0 > 0 is being validated (safediv).neg_fprime:uint256=(S+unsafe_div(S*mul2,10**18))+mul1*N_COINS/K0-unsafe_div(mul2*D,10**18)# D -= f / fprime; neg_fprime safediv being validatedD_plus:uint256=D*(neg_fprime+S)/neg_fprimeD_minus:uint256=unsafe_div(D*D,neg_fprime)if10**18>K0:D_minus+=unsafe_div(unsafe_div(D*unsafe_div(mul1,neg_fprime),10**18)*unsafe_sub(10**18,K0),K0)else:D_minus-=unsafe_div(unsafe_div(D*unsafe_div(mul1,neg_fprime),10**18)*unsafe_sub(K0,10**18),K0)ifD_plus>D_minus:D=unsafe_sub(D_plus,D_minus)else:D=unsafe_div(unsafe_sub(D_minus,D_plus),2)ifD>D_prev:diff=unsafe_sub(D,D_prev)else:diff=unsafe_sub(D_prev,D)ifdiff*10**14<max(10**16,D):# Could reduce precision for gas efficiency herefor_xinx:frac:uint256=_x*10**18/Dassert(frac>=10**16-1)and(frac<10**20+1)# dev: unsafe values x[i]returnDraise"Did not converge"@external@puredefget_y(_ANN:uint256,_gamma:uint256,_x:uint256[N_COINS],_D:uint256,i:uint256)->uint256[2]:# Safety checksassert_ANN>MIN_A-1and_ANN<MAX_A+1# dev: unsafe values Aassert_gamma>MIN_GAMMA-1and_gamma<MAX_GAMMA+1# dev: unsafe values gammaassert_D>10**17-1and_D<10**15*10**18+1# dev: unsafe values DANN:int256=convert(_ANN,int256)gamma:int256=convert(_gamma,int256)D:int256=convert(_D,int256)x_j:int256=convert(_x[1-i],int256)gamma2:int256=unsafe_mul(gamma,gamma)# savediv by x_j done here:y:int256=D**2/(x_j*N_COINS**2)# K0_i: int256 = (10**18 * N_COINS) * x_j / DK0_i:int256=unsafe_div(10**18*N_COINS*x_j,D)assert(K0_i>10**16*N_COINS-1)and(K0_i<10**20*N_COINS+1)# dev: unsafe values x[i]ann_gamma2:int256=ANN*gamma2# a = 10**36 / N_COINS**2a:int256=10**32# b = ANN*D*gamma2/4/10000/x_j/10**4 - 10**32*3 - 2*gamma*10**14b:int256=(D*ann_gamma2/400000000/x_j-convert(unsafe_mul(10**32,3),int256)-unsafe_mul(unsafe_mul(2,gamma),10**14))# c = 10**32*3 + 4*gamma*10**14 + gamma2/10**4 + 4*ANN*gamma2*x_j/D/10000/4/10**4 - 4*ANN*gamma2/10000/4/10**4c:int256=(unsafe_mul(10**32,convert(3,int256))+unsafe_mul(unsafe_mul(4,gamma),10**14)+unsafe_div(gamma2,10**4)+unsafe_div(unsafe_div(unsafe_mul(4,ann_gamma2),400000000)*x_j,D)-unsafe_div(unsafe_mul(4,ann_gamma2),400000000))# d = -(10**18+gamma)**2 / 10**4d:int256=-unsafe_div(unsafe_add(10**18,gamma)**2,10**4)# delta0: int256 = 3*a*c/b - bdelta0:int256=3*a*c/b-b# safediv by b# delta1: int256 = 9*a*c/b - 2*b - 27*a**2/b*d/bdelta1:int256=3*delta0+b-27*a**2/b*d/bdivider:int256=1threshold:int256=min(min(abs(delta0),abs(delta1)),a)ifthreshold>10**48:divider=10**30elifthreshold>10**46:divider=10**28elifthreshold>10**44:divider=10**26elifthreshold>10**42:divider=10**24elifthreshold>10**40:divider=10**22elifthreshold>10**38:divider=10**20elifthreshold>10**36:divider=10**18elifthreshold>10**34:divider=10**16elifthreshold>10**32:divider=10**14elifthreshold>10**30:divider=10**12elifthreshold>10**28:divider=10**10elifthreshold>10**26:divider=10**8elifthreshold>10**24:divider=10**6elifthreshold>10**20:divider=10**2a=unsafe_div(a,divider)b=unsafe_div(b,divider)c=unsafe_div(c,divider)d=unsafe_div(d,divider)# delta0 = 3*a*c/b - b: here we can do more unsafe ops now:delta0=unsafe_div(unsafe_mul(unsafe_mul(3,a),c),b)-b# delta1 = 9*a*c/b - 2*b - 27*a**2/b*d/bdelta1=3*delta0+b-unsafe_div(unsafe_mul(unsafe_div(unsafe_mul(27,a**2),b),d),b)# sqrt_arg: int256 = delta1**2 + 4*delta0**2/b*delta0sqrt_arg:int256=delta1**2+unsafe_mul(unsafe_div(4*delta0**2,b),delta0)sqrt_val:int256=0ifsqrt_arg>0:sqrt_val=convert(isqrt(convert(sqrt_arg,uint256)),int256)else:return[self._newton_y(_ANN,_gamma,_x,_D,i),0]b_cbrt:int256=0ifb>0:b_cbrt=convert(self._cbrt(convert(b,uint256)),int256)else:b_cbrt=-convert(self._cbrt(convert(-b,uint256)),int256)second_cbrt:int256=0ifdelta1>0:# second_cbrt = convert(self._cbrt(convert((delta1 + sqrt_val), uint256) / 2), int256)second_cbrt=convert(self._cbrt(convert(unsafe_add(delta1,sqrt_val),uint256)/2),int256)else:# second_cbrt = -convert(self._cbrt(convert(unsafe_sub(sqrt_val, delta1), uint256) / 2), int256)second_cbrt=-convert(self._cbrt(unsafe_div(convert(unsafe_sub(sqrt_val,delta1),uint256),2)),int256)# C1: int256 = b_cbrt**2/10**18*second_cbrt/10**18C1:int256=unsafe_div(unsafe_mul(unsafe_div(b_cbrt**2,10**18),second_cbrt),10**18)# root: int256 = (10**18*C1 - 10**18*b - 10**18*b*delta0/C1)/(3*a), keep 2 safe ops here.root:int256=(unsafe_mul(10**18,C1)-unsafe_mul(10**18,b)-unsafe_mul(10**18,b)/C1*delta0)/unsafe_mul(3,a)# y_out: uint256[2] = [# convert(D**2/x_j*root/4/10**18, uint256), # <--- y# convert(root, uint256) # <----------------------- K0Prev# ]y_out:uint256[2]=[convert(unsafe_div(unsafe_div(unsafe_mul(unsafe_div(D**2,x_j),root),4),10**18),uint256),convert(root,uint256)]frac:uint256=unsafe_div(y_out[0]*10**18,_D)assert(frac>=10**16-1)and(frac<10**20+1)# dev: unsafe value for yreturny_out
The cryptoswap algorithm uses different fees, such as fee, mid_fee, out_fee, or fee_gamma to determine the fees charged, more on that here. All Fee values are denominated in 1e10 and can be changed by the admin.
Additionally, just as for other curve pools, there is an ADMIN_FEE, which is hardcoded to 50%. All twocrypto-ng pools share a universal fee_receiver, which is determined within the Factory contract. Unlike for most other Curve pools, there is no external method to claim the admin fees. They are claimed when removing liquidity single sided.
xcp_profit, xcp_profit_a, and last_xcp are used for tracking pool profits, which is necessary for the pool's rebalancing mechanism. These values are denominated in 1e18.
Getter for the fee charged by the pool at the current state.
Returns: fee in bps (uint256).
Source code
@external@viewdeffee()->uint256:""" @notice Returns the fee charged by the pool at current state. @dev Not to be confused with the fee charged at liquidity action, since there the fee is calculated on `xp` AFTER liquidity is added or removed. @return uint256 fee bps. """returnself._fee(self.xp(self.balances,self.cached_price_scale))@internal@viewdef_fee(xp:uint256[N_COINS])->uint256:fee_params:uint256[3]=self._unpack_3(self.packed_fee_params)f:uint256=xp[0]+xp[1]f=fee_params[2]*10**18/(fee_params[2]+10**18-(10**18*N_COINS**N_COINS)*xp[0]/f*xp[1]/f)returnunsafe_div(fee_params[0]*f+fee_params[1]*(10**18-f),10**18)
Getter for the current fee_gamma. This parameter modifies the rate at which fees rise as imbalance intensifies. Smaller values result in rapid fee hikes with growing imbalances, while larger values lead to more gradual increments in fees as imbalance expands.
Returns: fee gamma (uint256).
Source code
packed_fee_params:public(uint256)# <---- Packs mid_fee, out_fee, fee_gamma.@view@externaldeffee_gamma()->uint256:""" @notice Returns the current fee gamma @return uint256 fee_gamma value. """returnself._unpack_3(self.packed_fee_params)[2]
Getter for the fee receiver of the admin fees. This address is set within the TwoCrypto-NG Factory. Every pool created through the Factory has the same fee receiver.
Returns: fee receiver (address).
Source code
interfaceFactory:deffee_receiver()->address:view@external@viewdeffee_receiver()->address:""" @notice Returns the address of the admin fee receiver. @return address Fee receiver. """returnfactory.fee_receiver()
Getter for the full profit at the last claim of admin fees.
Returns: profit at last claim (uint256).
Source code
xcp_profit_a:public(uint256)# <--- Full profit at last claim of admin fees.@externaldef__init__(_name:String[64],_symbol:String[32],_coins:address[N_COINS],_math:address,_salt:bytes32,packed_precisions:uint256,packed_gamma_A:uint256,packed_fee_params:uint256,packed_rebalancing_params:uint256,initial_price:uint256,):...self.xcp_profit_a=10**18...
Curve v2 pools automatically adjust liquidity to optimize depth close to the prevailing market rates, reducing slippage. More here. Price scaling parameter can be adjusted by the admin.
Getter for the price scale of the coin at index 1 with regard to the coin at index 0. The price scale determines the price band around which liquidity is concentrated.
Returns: price scale (uint256).
Source code
cached_price_scale:uint256# <------------------------ Internal price scale.@external@view@nonreentrant("lock")defprice_scale()->uint256:""" @notice Returns the price scale of the coin at index `k` w.r.t the coin at index 0. @dev Price scale determines the price band around which liquidity is concentrated. @return uint256 Price scale of coin. """returnself.cached_price_scale
Getter for the current pool amplification parameter.
Returns: A (uint256).
Source code
@view@externaldefA()->uint256:""" @notice Returns the current pool amplification parameter. @return uint256 A param. """returnself._A_gamma()[0]@view@internaldef_A_gamma()->uint256[2]:t1:uint256=self.future_A_gamma_timeA_gamma_1:uint256=self.future_A_gammagamma1:uint256=A_gamma_1&2**128-1A1:uint256=A_gamma_1>>128ifblock.timestamp<t1:# --------------- Handle ramping up and down of A --------------------A_gamma_0:uint256=self.initial_A_gammat0:uint256=self.initial_A_gamma_timet1-=t0t0=block.timestamp-t0t2:uint256=t1-t0A1=((A_gamma_0>>128)*t2+A1*t0)/t1gamma1=((A_gamma_0&2**128-1)*t2+gamma1*t0)/t1return[A1,gamma1]
@view@externaldefgamma()->uint256:""" @notice Returns the current pool gamma parameter. @return uint256 gamma param. """returnself._A_gamma()[1]@view@internaldef_A_gamma()->uint256[2]:t1:uint256=self.future_A_gamma_timeA_gamma_1:uint256=self.future_A_gammagamma1:uint256=A_gamma_1&2**128-1A1:uint256=A_gamma_1>>128ifblock.timestamp<t1:# --------------- Handle ramping up and down of A --------------------A_gamma_0:uint256=self.initial_A_gammat0:uint256=self.initial_A_gamma_timet1-=t0t0=block.timestamp-t0t2:uint256=t1-t0A1=((A_gamma_0>>128)*t2+A1*t0)/t1gamma1=((A_gamma_0&2**128-1)*t2+gamma1*t0)/t1return[A1,gamma1]
All pools have their own built in exponential moving average price oracle.
Prices and oracles are adjusted by when calling the internal tweak_price method, which happens at add_liquidity, remove_liquidity_one_coin and _exchange.
It is not called when removing liquidity one sided with remove_liquidity as this function does not alter prices.
@internaldeftweak_price(A_gamma:uint256[2],_xp:uint256[N_COINS],new_D:uint256,K0_prev:uint256=0,)->uint256:""" @notice Updates price_oracle, last_price and conditionally adjusts price_scale. This is called whenever there is an unbalanced liquidity operation: _exchange, add_liquidity, or remove_liquidity_one_coin. @dev Contains main liquidity rebalancing logic, by tweaking `price_scale`. @param A_gamma Array of A and gamma parameters. @param _xp Array of current balances. @param new_D New D value. @param K0_prev Initial guess for `newton_D`. """# ---------------------------- Read storage ------------------------------price_oracle:uint256=self.cached_price_oraclelast_prices:uint256=self.last_pricesprice_scale:uint256=self.cached_price_scalerebalancing_params:uint256[3]=self._unpack_3(self.packed_rebalancing_params)# Contains: allowed_extra_profit, adjustment_step, ma_time. -----^total_supply:uint256=self.totalSupplyold_xcp_profit:uint256=self.xcp_profitold_virtual_price:uint256=self.virtual_price# ----------------------- Update Oracles if needed -----------------------last_timestamp:uint256[2]=self._unpack_2(self.last_timestamp)alpha:uint256=0iflast_timestamp[0]<block.timestamp:# 0th index is for price_oracle.# The moving average price oracle is calculated using the last_price# of the trade at the previous block, and the price oracle logged# before that trade. This can happen only once per block.# ------------------ Calculate moving average params -----------------alpha=MATH.wad_exp(-convert(unsafe_div(unsafe_sub(block.timestamp,last_timestamp[0])*10**18,rebalancing_params[2]# <----------------------- ma_time.),int256,))# ---------------------------------------------- Update price oracles.# ----------------- We cap state price that goes into the EMA with# 2 x price_scale.price_oracle=unsafe_div(min(last_prices,2*price_scale)*(10**18-alpha)+price_oracle*alpha,# ^-------- Cap spot price into EMA.10**18)self.cached_price_oracle=price_oraclelast_timestamp[0]=block.timestamp# ----------------------------------------------------- Update xcp oracle.iflast_timestamp[1]<block.timestamp:cached_xcp_oracle:uint256=self.cached_xcp_oraclealpha=MATH.wad_exp(-convert(unsafe_div(unsafe_sub(block.timestamp,last_timestamp[1])*10**18,self.xcp_ma_time# <---------- xcp ma time has is longer.),int256,))self.cached_xcp_oracle=unsafe_div(self.last_xcp*(10**18-alpha)+cached_xcp_oracle*alpha,10**18)# Pack and store timestamps:last_timestamp[1]=block.timestampself.last_timestamp=self._pack_2(last_timestamp[0],last_timestamp[1])# `price_oracle` is used further on to calculate its vector distance from# price_scale. This distance is used to calculate the amount of adjustment# to be done to the price_scale.# ------------------------------------------------------------------------# ------------------ If new_D is set to 0, calculate it ------------------D_unadjusted:uint256=new_Difnew_D==0:# <--------------------------- _exchange sets new_D to 0.D_unadjusted=MATH.newton_D(A_gamma[0],A_gamma[1],_xp,K0_prev)# ----------------------- Calculate last_prices --------------------------self.last_prices=unsafe_div(MATH.get_p(_xp,D_unadjusted,A_gamma)*price_scale,10**18)# ---------- Update profit numbers without price adjustment first --------xp:uint256[N_COINS]=[unsafe_div(D_unadjusted,N_COINS),D_unadjusted*PRECISION/(N_COINS*price_scale)# <------ safediv.]# with price_scale.xcp_profit:uint256=10**18virtual_price:uint256=10**18ifold_virtual_price>0:xcp:uint256=isqrt(xp[0]*xp[1])virtual_price=10**18*xcp/total_supplyxcp_profit=unsafe_div(old_xcp_profit*virtual_price,old_virtual_price)# <---------------- Safu to do unsafe_div as old_virtual_price > 0.# If A and gamma are not undergoing ramps (t < block.timestamp),# ensure new virtual_price is not less than old virtual_price,# else the pool suffers a loss.ifself.future_A_gamma_time<block.timestamp:assertvirtual_price>old_virtual_price,"Loss"# -------------------------- Cache last_xcp --------------------------self.last_xcp=xcp# geometric_mean(D * price_scale)self.xcp_profit=xcp_profit# ------------ Rebalance liquidity if there's enough profits to adjust it:ifvirtual_price*2-10**18>xcp_profit+2*rebalancing_params[0]:# allowed_extra_profit --------^# ------------------- Get adjustment step ----------------------------# Calculate the vector distance between price_scale and# price_oracle.norm:uint256=unsafe_div(unsafe_mul(price_oracle,10**18),price_scale)ifnorm>10**18:norm=unsafe_sub(norm,10**18)else:norm=unsafe_sub(10**18,norm)adjustment_step:uint256=max(rebalancing_params[1],unsafe_div(norm,5))# ^------------------------------------- adjustment_step.ifnorm>adjustment_step:# <---------- We only adjust prices if the# vector distance between price_oracle and price_scale is# large enough. This check ensures that no rebalancing# occurs if the distance is low i.e. the pool prices are# pegged to the oracle prices.# ------------------------------------- Calculate new price scale.p_new:uint256=unsafe_div(price_scale*unsafe_sub(norm,adjustment_step)+adjustment_step*price_oracle,norm)# <---- norm is non-zero and gt adjustment_step; unsafe = safe.# ---------------- Update stale xp (using price_scale) with p_new.xp=[_xp[0],unsafe_div(_xp[1]*p_new,price_scale)]# ------------------------------------------ Update D with new xp.D:uint256=MATH.newton_D(A_gamma[0],A_gamma[1],xp,0)forkinrange(N_COINS):frac:uint256=xp[k]*10**18/D# <----- Check validity ofassert(frac>10**16-1)and(frac<10**20+1)# p_new.# ------------------------------------- Convert xp to real prices.xp=[unsafe_div(D,N_COINS),D*PRECISION/(N_COINS*p_new)]# ---------- Calculate new virtual_price using new xp and D. Reuse# `old_virtual_price` (but it has new virtual_price).old_virtual_price=unsafe_div(10**18*isqrt(xp[0]*xp[1]),total_supply)# <----- unsafe_div because we did safediv before (if vp>1e18)# ---------------------------- Proceed if we've got enough profit.if(old_virtual_price>10**18and2*old_virtual_price-10**18>xcp_profit):self.D=Dself.virtual_price=old_virtual_priceself.cached_price_scale=p_newreturnp_new# --------- price_scale was not adjusted. Update the profit counter and D.self.D=D_unadjustedself.virtual_price=virtual_pricereturnprice_scale
The aggregated prices are cached state prices (dx/dy) calculated AFTER the last trade.
Getter for the oracle price of the coin at index 1 with regard to the coin at index 0. The price oracle is an exponential moving average with a periodicity determined by ma_time.
Returns: oracle price (uint256).
Source code
@external@view@nonreentrant("lock")defprice_oracle()->uint256:""" @notice Returns the oracle price of the coin at index `k` w.r.t the coin at index 0. @dev The oracle is an exponential moving average, with a periodicity determined by `self.ma_time`. The aggregated prices are cached state prices (dy/dx) calculated AFTER the latest trade. @return uint256 Price oracle value of kth coin. """returnself.internal_price_oracle()@internal@viewdefinternal_price_oracle()->uint256:""" @notice Returns the oracle price of the coin at index `k` w.r.t the coin at index 0. @dev The oracle is an exponential moving average, with a periodicity determined by `self.ma_time`. The aggregated prices are cached state prices (dy/dx) calculated AFTER the latest trade. @param k The index of the coin. @return uint256 Price oracle value of kth coin. """price_oracle:uint256=self.cached_price_oracleprice_scale:uint256=self.cached_price_scalelast_prices_timestamp:uint256=self._unpack_2(self.last_timestamp)[0]iflast_prices_timestamp<block.timestamp:# <------------ Update moving# average if needed.last_prices:uint256=self.last_pricesma_time:uint256=self._unpack_3(self.packed_rebalancing_params)[2]alpha:uint256=MATH.wad_exp(-convert(unsafe_sub(block.timestamp,last_prices_timestamp)*10**18/ma_time,int256,))# ---- We cap state price that goes into the EMA with 2 x price_scale.return(min(last_prices,2*price_scale)*(10**18-alpha)+price_oracle*alpha)/10**18returnprice_oracle
@external@puredefwad_exp(x:int256)->int256:""" @dev Calculates the natural exponential function of a signed integer with a precision of 1e18. @notice Note that this function consumes about 810 gas units. The implementation is inspired by Remco Bloemen's implementation under the MIT license here: https://xn--2-umb.com/22/exp-ln. @param x The 32-byte variable. @return int256 The 32-byte calculation result. """value:int256=x# If the result is `< 0.5`, we return zero. This happens when we have the following:# "x <= floor(log(0.5e18) * 1e18) ~ -42e18".if(x<=-42_139_678_854_452_767_551):returnempty(int256)# When the result is "> (2 ** 255 - 1) / 1e18" we cannot represent it as a signed integer.# This happens when "x >= floor(log((2 ** 255 - 1) / 1e18) * 1e18) ~ 135".assertx<135_305_999_368_893_231_589,"Math: wad_exp overflow"# `x` is now in the range "(-42, 136) * 1e18". Convert to "(-42, 136) * 2 ** 96" for higher# intermediate precision and a binary base. This base conversion is a multiplication with# "1e18 / 2 ** 96 = 5 ** 18 / 2 ** 78".value=unsafe_div(x<<78,5**18)# Reduce the range of `x` to "(-½ ln 2, ½ ln 2) * 2 ** 96" by factoring out powers of two# so that "exp(x) = exp(x') * 2 ** k", where `k` is a signer integer. Solving this gives# "k = round(x / log(2))" and "x' = x - k * log(2)". Thus, `k` is in the range "[-61, 195]".k:int256=unsafe_add(unsafe_div(value<<96,54_916_777_467_707_473_351_141_471_128),2**95)>>96value=unsafe_sub(value,unsafe_mul(k,54_916_777_467_707_473_351_141_471_128))# Evaluate using a "(6, 7)"-term rational approximation. Since `p` is monic,# we will multiply by a scaling factor later.y:int256=unsafe_add(unsafe_mul(unsafe_add(value,1_346_386_616_545_796_478_920_950_773_328),value)>>96,57_155_421_227_552_351_082_224_309_758_442)p:int256=unsafe_add(unsafe_mul(unsafe_add(unsafe_mul(unsafe_sub(unsafe_add(y,value),94_201_549_194_550_492_254_356_042_504_812),y)>>96,\
28_719_021_644_029_726_153_956_944_680_412_240),value),4_385_272_521_454_847_904_659_076_985_693_276<<96)# We leave `p` in the "2 ** 192" base so that we do not have to scale it up# again for the division.q:int256=unsafe_add(unsafe_mul(unsafe_sub(value,2_855_989_394_907_223_263_936_484_059_900),value)>>96,50_020_603_652_535_783_019_961_831_881_945)q=unsafe_sub(unsafe_mul(q,value)>>96,533_845_033_583_426_703_283_633_433_725_380)q=unsafe_add(unsafe_mul(q,value)>>96,3_604_857_256_930_695_427_073_651_918_091_429)q=unsafe_sub(unsafe_mul(q,value)>>96,14_423_608_567_350_463_180_887_372_962_807_573)q=unsafe_add(unsafe_mul(q,value)>>96,26_449_188_498_355_588_339_934_803_723_976_023)# The polynomial `q` has no zeros in the range because all its roots are complex.# No scaling is required, as `p` is already "2 ** 96" too large. Also,# `r` is in the range "(0.09, 0.25) * 2**96" after the division.r:int256=unsafe_div(p,q)# To finalise the calculation, we have to multiply `r` by:# - the scale factor "s = ~6.031367120",# - the factor "2 ** k" from the range reduction, and# - the factor "1e18 / 2 ** 96" for the base conversion.# We do this all at once, with an intermediate result in "2**213" base,# so that the final right shift always gives a positive value.# Note that to circumvent Vyper's safecast feature for the potentially# negative parameter value `r`, we first convert `r` to `bytes32` and# subsequently to `uint256`. Remember that the EVM default behaviour is# to use two's complement representation to handle signed integers.returnconvert(unsafe_mul(convert(convert(r,bytes32),uint256),3_822_833_074_963_236_453_042_738_258_902_158_003_155_416_615_667)>>\
convert(unsafe_sub(195,k),uint256),int256)
packed_rebalancing_params:public(uint256)# <---------- Contains rebalancing# parameters allowed_extra_profit, adjustment_step, and ma_time.@view@externaldefma_time()->uint256:""" @notice Returns the current moving average time in seconds @dev To get time in seconds, the parameter is multipled by ln(2) One can expect off-by-one errors here. @return uint256 ma_time value. """returnself._unpack_3(self.packed_rebalancing_params)[2]*694/1000
Function to calculate the current price of the LP token with regard to the coin at index 0.
Returns: LP token price (uint256).
Source code
@external@view@nonreentrant("lock")deflp_price()->uint256:""" @notice Calculates the current price of the LP token w.r.t coin at the 0th index @return uint256 LP price. """return2*self.virtual_price*isqrt(self.internal_price_oracle()*10**18)/10**18@internal@viewdefinternal_price_oracle()->uint256:""" @notice Returns the oracle price of the coin at index `k` w.r.t the coin at index 0. @dev The oracle is an exponential moving average, with a periodicity determined by `self.ma_time`. The aggregated prices are cached state prices (dy/dx) calculated AFTER the latest trade. @param k The index of the coin. @return uint256 Price oracle value of kth coin. """price_oracle:uint256=self.cached_price_oracleprice_scale:uint256=self.cached_price_scalelast_prices_timestamp:uint256=self._unpack_2(self.last_timestamp)[0]iflast_prices_timestamp<block.timestamp:# <------------ Update moving# average if needed.last_prices:uint256=self.last_pricesma_time:uint256=self._unpack_3(self.packed_rebalancing_params)[2]alpha:uint256=MATH.wad_exp(-convert(unsafe_sub(block.timestamp,last_prices_timestamp)*10**18/ma_time,int256,))# ---- We cap state price that goes into the EMA with 2 x price_scale.return(min(last_prices,2*price_scale)*(10**18-alpha)+price_oracle*alpha)/10**18returnprice_oracle
In[1]:Pool.lp_price()Out[1]:26545349102641443# lp token price in wETH
get_virtual_price should not be confused with virtual_price, which is a cached virtual price.
Function to calculate the current virtual price of the pool's LP token.
Returns: virtual price (uint256).
Source code
@external@view@nonreentrant("lock")defget_virtual_price()->uint256:""" @notice Calculates the current virtual price of the pool LP token. @dev Not to be confused with `self.virtual_price` which is a cached virtual price. @return uint256 Virtual Price. """return10**18*self.get_xcp(self.D,self.cached_price_scale)/self.totalSupply
Getter for the last price. This variable is used to calculate the moving average price oracle.
Returns: last price (uint256).
Source code
last_prices:public(uint256)@internaldeftweak_price(A_gamma:uint256[2],_xp:uint256[N_COINS],new_D:uint256,K0_prev:uint256=0,)->uint256:""" @notice Updates price_oracle, last_price and conditionally adjusts price_scale. This is called whenever there is an unbalanced liquidity operation: _exchange, add_liquidity, or remove_liquidity_one_coin. @dev Contains main liquidity rebalancing logic, by tweaking `price_scale`. @param A_gamma Array of A and gamma parameters. @param _xp Array of current balances. @param new_D New D value. @param K0_prev Initial guess for `newton_D`. """...# ----------------------- Calculate last_prices --------------------------self.last_prices=unsafe_div(MATH.get_p(_xp,D_unadjusted,A_gamma)*price_scale,10**18)...
Getter for the oracle value for xcp. The oracle is an exponential moving average, with a periodicity determined by xcp_ma_time.
Returns: xcp oracle value (uint256).
Source code
cached_xcp_oracle:uint256# <----------- EMA of totalSupply * virtual_price.@external@view@nonreentrant("lock")defxcp_oracle()->uint256:""" @notice Returns the oracle value for xcp. @dev The oracle is an exponential moving average, with a periodicity determined by `self.xcp_ma_time`. `TVL` is xcp, calculated as either: 1. virtual_price * total_supply, OR 2. self.get_xcp(...), OR 3. MATH.geometric_mean(xp) @return uint256 Oracle value of xcp. """last_prices_timestamp:uint256=self._unpack_2(self.last_timestamp)[1]cached_xcp_oracle:uint256=self.cached_xcp_oracleiflast_prices_timestamp<block.timestamp:alpha:uint256=MATH.wad_exp(-convert(unsafe_div(unsafe_sub(block.timestamp,last_prices_timestamp)*10**18,self.xcp_ma_time),int256,))return(self.last_xcp*(10**18-alpha)+cached_xcp_oracle*alpha)/10**18returncached_xcp_oracle
Getter for the last timestamp of prices and xcp. The two values are packed into a uint256. Need to unpack them: Index 0 is for prices, index 1 is for xcp.
Returns: last timestamp (uint256).
Source code
last_timestamp:public(uint256)# idx 0 is for prices, idx 1 is for xcp.
Getter for the admin of the pool. All deployed pools share the same admin, which is specified within the Factory contract.
Returns: admin (address).
Source code
interfaceFactory:defadmin()->address:view@external@viewdefadmin()->address:""" @notice Returns the address of the pool's admin. @return address Admin. """returnfactory.admin()
Getter for the precisions of each coin in the pool. Precisions are used to make sure the pool is compatible with any coins with decimals up to 18.
Returns: precision of coins (uint256[N_COINS]).
Source code
PRECISION:constant(uint256)=10**18# <------- The precision to convert to.PRECISIONS:immutable(uint256[N_COINS])@view@externaldefprecisions()->uint256[N_COINS]:# <-------------- For by view contract.""" @notice Returns the precisions of each coin in the pool. @return uint256[3] precisions of coins. """returnPRECISIONS