
CURVE
STABLECOIN

(CRVUSD)
SECURITY

AUDIT
REPORT

June 5, 2023

TABLE OF CONTENTS

2

2

2

5

5

7

8

9

9

9

10

12

12

13

14

14

15

16

18

19

19

20

21

22

23

24

25

1. INTRODUCTION

1.1 Disclaimer

1.2 Security Assessment Methodology

1.3 Project Overview

1.4 Project Dashboard

1.5 Summary of findings

1.6 Conclusion

2.FINDINGS REPORT

2.1 Critical

C-1 Withdrawal of tokens from AMM

C-2 Inflation attack on empty ticks

2.2 High

H-1 Withdrawal of tokens with debt as zero

H-2 AMM.exchange() produces negative fees

2.3 Medium

M-1 Raw calls on ETH transfers allow reentrancy

M-2 Not formalized stablecoin minting to addresses

M-3 Early liquidations via repay() front-running

M-4 AggregateStablePrice can be manipulated

2.4 Low

L-1 No checks of the result of AMM.withdraw

L-2 AMM.exchange() has no deadline

L-3 Not compatible with rebase/deflationary/hookable tokens and tokens with fees

L-4 Key functions do not have return values

L-5 ControllerFactory has unnecessary calculation operations

L-6 ControllerFactory.set_admin() does not have two-step ownership transferring

3. ABOUT MIXBYTES

1

1. INTRODUCTION

1.1 Disclaimer

The audit makes no statements or warranties about utility of the code, safety of the code, suitability of the

business model, investment advice, endorsement of the platform or its products, regulatory regime for the

business model, or any other statements about fitness of the contracts to purpose, or their bug free status.

The audit documentation is for discussion purposes only. The information presented in this report is

confidential and privileged. If you are reading this report, you agree to keep it confidential, not to copy,

disclose or disseminate without the agreement of the Client. If you are not the intended recipient(s) of this

document, please note that any disclosure, copying or dissemination of its content is strictly forbidden.

1.2 Security Assessment Methodology

A group of auditors are involved in the work on the audit. The security engineers check the provided source

code independently of each other in accordance with the methodology described below:

1. Project architecture review:

Stage goals

2. Checking the code in accordance with the vulnerabilities checklist:

Project documentation review.•

General code review.•

Reverse research and study of the project architecture on the source code alone.•

Build an independent view of the project's architecture.•

Identifying logical flaws.•

Manual code check for vulnerabilities listed on the Contractor's internal checklist. The Contractor's

checklist is constantly updated based on the analysis of hacks, research, and audit of the clients' codes.

•

Code check with the use of static analyzers (i.e Slither, Mythril, etc).•

2

Stage goal

Eliminate typical vulnerabilities (e.g. reentrancy, gas limit, flash loan attacks etc.).

3. Checking the code for compliance with the desired security model:

Stage goal

Detect inconsistencies with the desired model.

4. Consolidation of the auditors' interim reports into one:

Stage goals

5. Bug fixing & re-audit:

Detailed study of the project documentation.•

Examination of contracts tests.•

Examination of comments in code.•

Comparison of the desired model obtained during the study with the reversed view obtained during the

blind audit.

•

Exploits PoC development with the use of such programs as Brownie and Hardhat.•

Cross check: each auditor reviews the reports of the others.•

Discussion of the issues found by the auditors.•

Issuance of an interim audit report.•

Double-check all the found issues to make sure they are relevant and the determined threat level is correct.•

Provide the Client with an interim report.•

The Client either fixes the issues or provides comments on the issues found by the auditors. Feedback

from the Customer must be received on every issue/bug so that the Contractor can assign them a status

(either "fixed" or "acknowledged").

•

Upon completion of the bug fixing, the auditors double-check each fix and assign it a specific status,

providing a proof link to the fix.

•

A re-audited report is issued.•

3

Stage goals

6. Final code verification and issuance of a public audit report:

Stage goals

Finding Severity breakdown

All vulnerabilities discovered during the audit are classified based on their potential severity and have the

following classification:

Severity Description

Critical Bugs leading to assets theft, fund access locking, or any other loss of funds.

High Bugs that can trigger a contract failure. Further recovery is possible only by
manual modification of the contract state or replacement.

Medium Bugs that can break the intended contract logic or expose it to DoS attacks, but do
not cause direct loss funds.

Low Bugs that do not have a significant immediate impact and could be easily fixed.

Based on the feedback received from the Customer regarding the list of findings discovered by the

Contractor, they are assigned the following statuses:

Verify the fixed code version with all the recommendations and its statuses.•

Provide the Client with a re-audited report.•

The Customer deploys the re-audited source code on the mainnet.•

The Contractor verifies the deployed code with the re-audited version and checks them for compliance.•

If the versions of the code match, the Contractor issues a public audit report.•

Conduct the final check of the code deployed on the mainnet.•

Provide the Customer with a public audit report.•

4

Status Description

Fixed Recommended fixes have been made to the project code and no longer affect its
security.

Acknowledged The Customer is aware of the finding. Recommendations for the finding are
planned to be resolved in the future.

1.3 Project Overview

The core idea of the stablecoin design is Lending-Liquidating AMM Algorithm. The idea is that it converts

between collateral (for example, ETH) and the stablecoin (let's call it USD here). If the price of collateral is

high - a user has deposits all in ETH, but as it goes lower, it converts to USD.

1.4 Project Dashboard

Project Summary

Title Description

Client Curve Finance

Project name Curve Stablecoin (crvUSD)

Timeline April 10 2023 - June 01 2023

Number of Auditors 3

Project Log

Date Commit Hash Note

10.04.2023 0d9265cc2dbd221b0f27f880fac1c590e1f12d28 Commit for the audit

5

Date Commit Hash Note

30.05.2023 c5169a7eb687a9878b989696a5c813dfc737e377 Commit for the reaudit

Project Scope

The audit covered the following files:

File name Link

AggMonetaryPolicy.vy AggMonetaryPolicy.vy

AggregateStablePrice.vy AggregateStablePrice.vy

CryptoWithStablePrice.vy CryptoWithStablePrice.vy

EmaPriceOracle.vy EmaPriceOracle.vy

PegKeeper.vy PegKeeper.vy

AMM.vy AMM.vy

Controller.vy Controller.vy

ControllerFactory.vy ControllerFactory.vy

Stablecoin.vy Stablecoin.vy

Deployments

File name Contract deployed on mainnet Comment

Stablecoin 0xf939E0A03FB07F59A73314E73794Be0E57ac1b4E

ControllerFactory 0xC9332fdCB1C491Dcc683bAe86Fe3cb70360738BC

6

https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/mpolicies/AggMonetaryPolicy.vy
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/price_oracles/AggregateStablePrice.vy
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/price_oracles/CryptoWithStablePrice.vy
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/price_oracles/EmaPriceOracle.vy
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/stabilizer/PegKeeper.vy
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/AMM.vy
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Controller.vy
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/ControllerFactory.vy
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Stablecoin.vy
https://etherscan.io/address/0xf939E0A03FB07F59A73314E73794Be0E57ac1b4E
https://etherscan.io/address/0xC9332fdCB1C491Dcc683bAe86Fe3cb70360738BC

File name Contract deployed on mainnet Comment

AMM 0x136e783846ef68C8Bd00a3369F787dF8d683a696

Controller 0x8472A9A7632b173c8Cf3a86D3afec50c35548e76

AggMonetaryPolicy 0xc684432FD6322c6D58b6bC5d28B18569aA0AD0A1

AggregateStablePrice 0xe5Afcf332a5457E8FafCD668BcE3dF953762Dfe7

PegKeeper 0xaA346781dDD7009caa644A4980f044C50cD2ae22 USDC

PegKeeper 0xE7cd2b4EB1d98CD6a4A48B6071D46401Ac7DC5C8 USDT

PegKeeper 0x6B765d07cf966c745B340AdCa67749fE75B5c345 USDP

PegKeeper 0x1ef89Ed0eDd93D1EC09E4c07373f69C49f4dcCae TUSD

1.5 Summary of findings

Severity # of Findings

Critical 2

High 2

Medium 4

Low 6

ID Name Severity Status

C-1 Withdrawal of tokens from AMM Critical Fixed

7

https://etherscan.io/address/0x136e783846ef68C8Bd00a3369F787dF8d683a696
https://etherscan.io/address/0x8472A9A7632b173c8Cf3a86D3afec50c35548e76
https://etherscan.io/address/0xc684432FD6322c6D58b6bC5d28B18569aA0AD0A1
https://etherscan.io/address/0xe5Afcf332a5457E8FafCD668BcE3dF953762Dfe7
https://etherscan.io/address/0xaA346781dDD7009caa644A4980f044C50cD2ae22
https://etherscan.io/address/0xE7cd2b4EB1d98CD6a4A48B6071D46401Ac7DC5C8
https://etherscan.io/address/0x6B765d07cf966c745B340AdCa67749fE75B5c345
https://etherscan.io/address/0x1ef89Ed0eDd93D1EC09E4c07373f69C49f4dcCae

C-2 Inflation attack on empty ticks Critical Fixed

H-1 Withdrawal of tokens with debt as zero High Fixed

H-2 AMM.exchange() produces negative fees High Fixed

M-1 Raw calls on ETH transfers allow reentrancy Medium Fixed

M-2 Not formalized stablecoin minting to addresses Medium Acknowledged

M-3 Early liquidations via repay() front-running Medium Fixed

M-4 AggregateStablePrice can be manipulated Medium Acknowledged

L-1 No checks of the result of AMM.withdraw Low Acknowledged

L-2 AMM.exchange() has no deadline Low Acknowledged

L-3 Not compatible with rebase/deflationary/hookable
tokens and tokens with fees

Low Acknowledged

L-4 Key functions do not have return values Low Acknowledged

L-5 ControllerFactory has unnecessary calculation
operations

Low Acknowledged

L-6 ControllerFactory.set_admin() does not have two-
step ownership transferring

Low Acknowledged

1.6 Conclusion

During the audit process 2 CRITICAL, 2 HIGH, 4 MEDIUM, and 6 LOW severity findings were spotted. After

working through the reported findings, all of them were acknowledged or fixed by the client.

8

2.FINDINGS REPORT

2.1 Critical

C-1 Withdrawal of tokens from AMM

Severity Critical

Status Fixed in c5169a7e

Description

Controller allows to call AMM via callback:

withdraw_sig = get_method_id("withdraw(address,uint256)") # AMM

controller.liquidate_extended(user, 0, frac, True,

 market_amm.address, withdraw_sig, [])

AMM.vy#L728

def withdraw(user: address, frac: uint256) -> uint256[2]:

This method is sufficient to fulfill all the necessary conditions for a callback (Controller.vy#L525).

Using liquidate_extended, a hacker has the ability to withdraw any amount from AMM. It is also

possible to make a complete liquidation through a partial one.

The test script was handed over to the customer.

Recommendation

It is recommended to use a specific signature for calling a callback.

Client's commentary

Used specific callbacks now (such as callback_liquidate() etc).

9

https://github.com/curvefi/curve-stablecoin/commit/c5169a7eb687a9878b989696a5c813dfc737e377
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/AMM.vy#L728
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Controller.vy#L525

C-2 Inflation attack on empty ticks

Severity Critical

Status Fixed in c5169a7e

Description

Each AMM tick represents an empty vault, where shares are issued for collateral. A hacker can manipulate

a tick so that it contains just 1 wei share and any amount of collateral. For example, suppose the hacker

initially inflates the tick so that it contains 1 wei share and 1 ETH. Next, the hacker sees a victim's

transaction in the mempool, which is going to deposit 20 ETH into this tick. The hacker then needs to

inflate the tick to contain 1 wei share and 10 ETH + 1 wei right before the victim's transaction.

How many shares will the victim receive in this tick? The victim receives 1 wei share due to a rounding

error:

1 wei share * 20 ETH / (10 ETH + 1 wei) = 1 wei share

Now there are 2 wei shares in total in this tick, one for the victim and one for the hacker.

The hacker then self-liquidates and receives 50% of the ether from the entire tick, which is 15 ETH, even

though they initially invested 10 ETH. The profit is +5 ETH.

How does the hacker inflate the collateral in the tick?

Step 1. Before the frontrunning, the hacker ensures that the tick contains 1 share and 100+ wei ETH. They

can do it using the AMM fee, performing exchange() back and forth. This is a heavy operation, plus there

may be fees if there are other positions before the hacker's ticks. Therefore, this must be done in advance.

After that the hacker self-liquidates 99% of their position, leaving one share. If there are no other positions

before the hacker, they only spend money on gas.

Step 2. Next, the hacker attacks themselves using an inflation attack. To do this, they perform

create_loan()+repay() 100 times from another account. Each pass inflates the collateral by 1.5

times.

How it works:

Suppose the tick currently contains 1 wei share and 106 wei collateral. The hacker deposits (106 * 2 - 1)

wei collateral into the tick. How many shares will be minted?

10

https://github.com/curvefi/curve-stablecoin/commit/c5169a7eb687a9878b989696a5c813dfc737e377

1 wei share * (106 * 2 - 1) / 106 = 1 wei share

Only 1 wei share was minted due to a rounding error.

Now the tick has 2 wei shares and approximately 106 * 3 wei collateral.

What happens when the hacker performs a full repay? They get back approximately

106 * 3 / 2 wei

The tick remains with approximately the same amount: 1 wei share and 106 * 3 / 2 wei collateral.

It can be seen that one pass of create_loan()+repay() does not change the number of shares but

increases the collateral by 1.5 times. 100 rounds can inflate the collateral from 106 wei to 42 ETH.

The test script was handed over to the customer.

Recommendation

There are different approaches on how to solve the Inflation Attack problem. Some of the approaches

along with their pros and cons, can be found in the OpenZeppelin github issue:

https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3706.

One way to resolve the problem is to use virtual dead shares, as implemented in the latest OpenZeppelin

ERC-4626 vault:

In case this particular fix is chosen, it is recommended to use a virtual offset of 1000

(UniswapV2Pair.sol#L120), as this will make the residual possibility of griefing practically unattainable.

Client's commentary

Excellent finding. Used the OpenZeppelin method to fix.

ERC4626.sol#L200•

ERC4626.sol#L207•

11

https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3706
https://github.com/Uniswap/v2-core/blob/ee547b17853e71ed4e0101ccfd52e70d5acded58/contracts/UniswapV2Pair.sol#L120
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/51294b7480fd13e716207a621ac1d55a6290d56d/contracts/token/ERC20/extensions/ERC4626.sol#L200
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/51294b7480fd13e716207a621ac1d55a6290d56d/contracts/token/ERC20/extensions/ERC4626.sol#L207

2.2 High

H-1 Withdrawal of tokens with debt as zero

Severity High

Status Fixed in c5169a7e

Description

This code allows you not to spend debt in liquidation (

Controller.vy#L990):

debt = unsafe_div(debt * frac, 10**18)

If debt * frac is less than 10**18, then you don't have to pay for the liquidation part. We especially have

the ability to eliminate the entire collateral by passing frac as 1. Example:

l_amount = 1

collateral_token._mint_for_testing(user, c_amount)

market_controller.create_loan(c_amount, l_amount, n)

market_controller.liquidate_extended(user, 0, 10 ** 18 - 1,

 True, ZERO_ADDRESS, [])

d_debt = 0

xy[0] = 0

xy[1] 1000

PROFIT stablecoin.balanceOf(user) +0

PROFIT collateral_token.balanceOf(user) +1000

In this case, the attack is disadvantageous due to the gas.

Recommendation

It is recommended to add an additional check that debt != 0.

Client's commentary

Fixed

12

https://github.com/curvefi/curve-stablecoin/commit/c5169a7eb687a9878b989696a5c813dfc737e377
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Controller.vy#L990

H-2 AMM.exchange() produces negative fees

Severity High

Status Fixed in c5169a7e

Description

Using exchange() back-and-forth can generate profit without losing stablecoins. This occurs due to

inaccuracies in calculating the invariant when AMM fees are low.

The profit generated from each tick is small (approximately 0.000000000136353050%), but under certain

circumstances it can be significant enough for a hacker to execute an attack.

For example, let's assume that there are 100 billion USD spread across 1000 ticks and both the AMM fee

and AMM admin fee are equal to zero. In this case, during a single back-and-forth pass, the hacker would

earn 0.000000000136353050% from each tick and their total profit from the 100 billion would be

approximately 0.136 USD.

If we consider that such a back-and-forth pass would take 833,333 gas, then at the current gas prices on

the Ethereum mainnet, such an attack would not be economically feasible.

However, the attack may become more relevant in the future if it is executed on a sidechain with low gas

fees. For example, at a gas price of 130 gwei on the Polygon MATIC network (1 MATIC = $0.93), the hacker

would spend approximately $0.10 on the attack but earn $0.136. The hacker can repeat the back-and-forth

passes in a cycle within a single transaction 1000 times in a cycle and will get a net profit of $36 from a

single transaction. By repeating this attack over and over again, they would be able to drain a significant

portion of the funds available in the AMM.

The attack works with an AMM fee ranging from 0 to 650,000. Starting from an AMM fee of 1,000,000, the

attack fails.

Recommendation

It is recommended to set a limit on the minimum possible AMM fee of no less than 1,000,000.

Client's commentary

Fee limited

13

https://github.com/curvefi/curve-stablecoin/commit/c5169a7eb687a9878b989696a5c813dfc737e377

2.3 Medium

M-1 Raw calls on ETH transfers allow reentrancy

Severity Medium

Status Fixed in c5169a7e

Description

If WETH is used as collateral, users can choose to receive native ETH when it is sent to users. It happens in

function _withdraw_collateral().

It breaks Checks-Effects-Interactions pattern. So, a call to an arbitrary address can be made in the middle

of functions repay() and _liquidate().

Thus, an attacker can reenter some other smart contract (excluding this Controller). For example, this

attacker can callrate_write() in AggMonetaryPolicy, and the rate will be updated using old

total_debt (not affected by ongoing repay or liquidate).

Recommendation

We recommend limiting gas on native ETH transfers.

Controller.vy#L514-L521•

Controller.vy#L731•

Controller.vy#L795•

Controller.vy#L1054•

Controller.vy#L1069•

14

https://github.com/curvefi/curve-stablecoin/commit/c5169a7eb687a9878b989696a5c813dfc737e377
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Controller.vy#L514-L521
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Controller.vy#L731
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Controller.vy#L795
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Controller.vy#L1054
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Controller.vy#L1069

M-2 Not formalized stablecoin minting to addresses

Severity Medium

Status Acknowledged

Description

Admin of ControllerFactory can mint any amount of stablecoin to any address calling

set_debt_ceiling. It is designed to mint tokens to Controllers, but the function does not check that a

receiver is among Controllers.

Moreover, this function is used to mint tokens to PegKeepers, and there are no checks that a receiver is

among PegKeepers. The whole process is not protected and requires strong admin attention.

Recommendation

We recommend checking that the inputted address in set_debt_ceiling is allowed to receive mint

stablecoins (is among either Controllers or PegKeepers).

Client's commentary

That's a good thinking, however we also want to use this to allow to mint for bridged pools (on other

chains).

ControllerFactory.vy#L306-L313•

15

https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/ControllerFactory.vy#L306-L313

M-3 Early liquidations via repay() front-running

Severity Medium

Status Fixed in c5169a7e

Description

If a user's position is underwater, a partial repay() does not move the borrower's bands but merely

reduces the initial_debt:

else: # partial repay

if ns[0] > active_band:

 # Not in liquidation - can move bands

 ...

else:

 # Underwater - cannot move band but can avoid a bad liquidation

 ... # do nothing

self.loan[_for] = Loan({initial_debt: debt, rate_mul: rate_mul})

A hacker can sandwich the victim's transaction:

1. The hacker uses exchange() to move the active_band forward so the user's position becomes

underwater.

2. Then the user performs a partial repay() which now will not move the user's bands.

3. The hacker returns their funds (minus fee) using exchange() back.

In the above example, if the collateral price goes lower, the user's position will be subject to liquidation

much earlier.

Currently, a user cannot protect themselves from such griefing. If the user calls repay(0) to move their

bands according to the actual debt, nothing will happen:

def repay(_d_debt: ...):

...

if _d_debt == 0:

 return

Controller.vy#L777-L781•

16

https://github.com/curvefi/curve-stablecoin/commit/c5169a7eb687a9878b989696a5c813dfc737e377
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Controller.vy#L777-L781

Recommendation

It is recommended to allow the user to move their bands by calling repay(0).

Client's commentary

Good point. This is not dangerous because even "liquidation" is not scary at all, and in addition,

attacker pays some fees to manipulate.

Controller.vy#L731•

17

https://github.com/curvefi/curve-stablecoin/blob/1471b4177ece58d3f8c897cd8084be6ea03f11e0/contracts/Controller.vy#L731

M-4 AggregateStablePrice can be manipulated

Severity Medium

Status Acknowledged

Description

If there is not enough liquidity in the pools or there are no pools, then 10**18 is returned as the price in

AggregateStablePrice.

if Dsum == 0:

 return 10**18

It is supposed to be used to manipulate the price. At an early stage of the project, this can be significant.

Recommendation

We recommend taking these conditions into account when deploying contracts.

Client's commentary

Absolutely. That's why we fill the pegkeeper pools right away after deploying

AggregateStablePrice.vy#L151•

18

https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/price_oracles/AggregateStablePrice.vy#L151

2.4 Low

L-1 No checks of the result of AMM.withdraw

Severity Low

Status Acknowledged

Description

After withdraw there is no check that this method did not return any amount.

Controller.vy#L770

There will be either emptiness or dust, but it is worth checking or providing for such a possibility in a

comment.

Recommendation

It is recommended that you further check xy[0].

19

https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Controller.vy#L770

L-2 AMM.exchange() has no deadline

Severity Low

Status Acknowledged

Description

The AMM.exchange() and AMM.exchange_dy() functions have slippage checks for output tokens;

however, they do not have a deadline check for the transaction:

def exchange(i, j, in_amount, min_amount, _for)

...

def exchange_dy(i, j, out_amount, max_amount, _for)

A realistic scenario is possible where, due to high gas prices, an exchange() transaction will remain in

the mempool for a significant amount of time, and the prices in the AMM may change significantly. This

would allow MEV-bots to steal the user's positive slippage (unrealized profit).

Recommendation

It is recommended to add a deadline parameter in exchange functions.

Client's commentary

Deadline are bad practice, in our opinion. Just min _amount is better

AMM.vy#L1284-L1312•

20

https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/AMM.vy#L1284-L1312

L-3 Not compatible with rebase/deflationary/hookable tokens and tokens with fees

Severity Low

Status Acknowledged

Description

Smart contracts do not check token balances, and it only works for normal tokens without unexpected

balance behavior. In addition, tokens with additional hooks can open additional attack vectors.

Recommendation

This design is acceptable and even has some security advantages - if the project does not have plans to

have AMMs with such tokens.

Client's commentary

Yes - only wrapped

21

L-4 Key functions do not have return values

Severity Low

Status Acknowledged

Description

Many key functions do not have return values but they imply different behavior in case of non-revert.

It can add more complexity on integration with other smart contracts.

Recommendation

We recommend returning key values that can explain the results of call executions.

Controller.vy#L586•

Controller.vy#L600•

Controller.vy#L671•

Controller.vy#L685•

Controller.vy#L700•

Controller.vy#L731•

Controller.vy#L795•

Controller.vy#L1054•

Controller.vy#L1069•

22

https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Controller.vy#L586
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Controller.vy#L600
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Controller.vy#L671
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Controller.vy#L685
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Controller.vy#L700
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Controller.vy#L731
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Controller.vy#L795
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Controller.vy#L1054
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/Controller.vy#L1069

L-5 ControllerFactory has unnecessary calculation operations

Severity Low

Status Acknowledged

Description

ControllerFactory stores the number of collaterals as a unit starting from 2**128.

Then it reads the number by subtracting2**128.

Calculations with 2**128 can likely be dropped.

Recommendation

We recommend removing calculations with 2**128.

Client's commentary

They cannot be because default value is 0, and indexes also start with 0. To distinguish between 0 and

None, we add a constant offset (which could be anything).

ControllerFactory.vy#L215•

ControllerFactory.vy#L249•

ControllerFactory.vy#L260•

23

https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/ControllerFactory.vy#L215
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/ControllerFactory.vy#L249
https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/ControllerFactory.vy#L260

L-6 ControllerFactory.set_admin() does not have two-step ownership transferring

Severity Low

Status Acknowledged

Description

Admin can transfer ownership to anyone, even if it is a wrong address or zero-value address.

Recommendation

We recommend following a two-step procedure of ownership transferring when a new owner has to accept

ownership.

Client's commentary

That's why it is imperative that only DAO (which can only vote for calls) owns the factory, not an EOA

or a multisig

ControllerFactory.vy#L281-L288•

24

https://github.com/curvefi/curve-stablecoin/blob/0d9265cc2dbd221b0f27f880fac1c590e1f12d28/contracts/ControllerFactory.vy#L281-L288

3. ABOUT MIXBYTES

MixBytes is a team of blockchain developers, auditors and analysts keen on decentralized systems. We

build opensource solutions, smart contracts and blockchain protocols, perform security audits, work on

benchmarking and software testing solutions, do research and tech consultancy.

Contacts

https://github.com/mixbytes/audits_public

https://mixbytes.io/

hello@mixbytes.io

https://twitter.com/mixbytes

25

https://github.com/mixbytes/audits_public
https://mixbytes.io/
mailto:hello@mixbytes.io
https://twitter.com/mixbytes

