

PUBLIC

Code Assessment

of the Tricrypto

Smart Contracts

September 29, 2021

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 4

3 Limitations and use of report 7

4 Terminology 8

5 Findings 9

6 Resolved Findings 11

7 Notes 15

Swiss Stake GmbH - Tricrypto - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Curve Team,

First and foremost we would like to thank you for giving us the opportunity to assess the current state of
your Tricrypto system. This document outlines the findings, limitations, and methodology of our
assessment.

We hope that this assessment provides valuable findings. We are happy to receive questions and
feedback to improve our service and are highly committed to further support your project.

Sincerely yours,

ChainSecurity

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code Corrected 1

Low -Severity Findings 9

• Code Corrected 6

• Acknowledged 3

Swiss Stake GmbH - Tricrypto - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

2 Assessment Overview
In this section we briefly describe the overall structure and scope of the engagement including the code
commits which are referenced throughout this report.

2.1 Scope
The assessment was performed on the three contracts CurveCryptoMath3, CurveCryptoSwap,
CurveCryptoViews3. These are vyper code files inside the project repository. The table below
indicates the code versions relevant to this report and when they were received.

V Date Commit Hash Note

1 08 Apr 2021 f3b5a9233a45981237dccadfcfb9b498cf3d22d0 Initial Version

2 29 May 2021 0316911f5339ad10ced59aafce243e5eb6c51012 Second Version

3 27 Aug 2021 8c5aa63c6a4e08021dcd87a0d179ce792099e789 Third Version

4 26 Sep 2021 dfc1166a3eabbf03b6640cf91d8cfd02bb6bbb5d Fourth Version

Version 1

Version 2 Version 3

For the vyper smart contracts , the compiler version 0.2.11 was chosen. For the vyper smart
contracts , the compiler version 0.2.12 was chosen. For the vyper smart contracts
and subsequent versions, the compiler version 0.2.15 was chosen.

2.1.1 Excluded from scope
We tried to assess the project as detailed as possible as well as the underlying economical and
mathematical concepts. Still, the project's complexity makes it hard to finally conclude that there are no
unexpected corner cases or black swan events that will break these concepts.

2.1.2 Excluded from this report
During the engagement shortcomings inside the smart contracts were discovered by the Curve team.
These shortcomings are not listed in this report.

2.2 System Overview
Curve.finance extends their exchanges to swap (n=3) coins instantly, where the coins no longer need to
be equivalent in value. The project consists of three relevant smart contracts written in the Vyper
programming language (CurveCryptoMath3, CurveCryptoSwap, CurveCryptoViews3). Generally,
Curve is a variant of a decentralized exchange (DEX) that relies on automated market making (AMM).
Curve and similar AMM projects build upon the concept of liquidity pools and an invariant to determine
the ratio/price to swap one coin vs another. A liquidity pool consists of multiple tokens. The tokens are
added to the pool by so called liquidity providers. In return, liquidity providers receive a token that
represents a share of the funds they own of the pool. Providing liquidity is incentivized by trading fees
that the liquidity provider will receive when users trade (the fees are paid out indirectly by increasing the
pool's value). By having a certain amount of tokens, trades can be executed immediately in one
transaction. The execution can be done immediately because no counter-party is needed.

Curve modified their function compared to e.g. Uniswap in a way that the price is more robust by
introducing a modified invariant. This is achieved by flattening the curve around the equilibrium and
shifting the curve given certain conditions are met. This new version aims to protect liquidity providers

Swiss Stake GmbH - Tricrypto - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

better, increase their profit and increase liquidity. The main invention of the new invariant is that the
prices are included into the invariant. Additionally, conditional price updates are performed to shift the
curve if desired.

2.2.1 The Pool
Even though the contracts are written for the general scenario of n tokens in a pool, the contracts were
only assessed for the case of n=3. Hence, a pool has three different tokens. The pool has size
restrictions described later in the subsection Miscellaneous.

2.2.2 The Curve
A pool always tracks the balances and prices for each of the three tokens (adhering to the restrictions.
Prices are quoted relative to the first token (asset zero).

An invariant with the following parameters defines a curve which is used to determine the prices for
trading. The parameters are D (invariant value), A (amplification factor), and gamma (which controls the
size of the flat curve area). The invariant is fully defined in Curve's documentation.

2.2.3 Profit and Conditional Price Recalculations
As in the previous Curve version there is a virtual price to track the development of liquidity shares. The
virtual price is determined by the value of the pool in the equilibrium. Changes of this value are used as a
profit/loss indicators. Changes to the virtual price determine whether a potential price change is accepted
or not.

Many curve actions will trigger the check whether a price update should be performed. This check will
evaluate whether the currently used prices differ significantly from the internal price oracle. Before
accepting a price update, the resulting theoretical gain/loss is calculated by comparing the new updated
prices and the resulting value of the pool with the accumulated profits (interest-bearing) the pool has
made. The formula is defined in Curve's documentation in detail.

If a price update results in a loss for the pool (by the definition mentioned before) which exceeds half the
accumulated profits, the transaction would not update the prices. As a result the curve would not be
shifted but instead, a movement on the curve would happen. Hence, the exchange still works, but the flat
area of the curve is not being utilized until the price update becomes possible or the prices shift back to
the previous values.

2.2.4 The Fee Model
There are two kinds of fees, admin fees and dynamic fees. Admin fees occur only when the liquidity pool
accumulates funds (measured as xcp_profit). Admin fees are paid by minting new liquidity provider
token to an admin account.

Dynamic fees are paid when depositing, exchanging and withdrawing liquidity in one coin. The fee
remains in the pool, hence, increasing the value of the liquidity tokens which is the incentive to provide
liquidity. These fees depend on how close the current balances are to the equilibrium point of the curve.

2.2.5 Administration
The only role in the system is the owner. The role can transfer the ownership to another account by
calling the functions commit_transfer_ownership and after a waiting period
apply_transfer_ownership. The transfer can be reverted by calling
revert_transfer_ownership.

The curve parameters A and gamma can be changed by calling ramp_A_gamma. The change will take
place gradually (over a defined period e.g. 24h) and not at once. The change process can be stopped by
calling stop_ramp_A_gamma.

Swiss Stake GmbH - Tricrypto - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Fees and fee related parameters, the adjustment step, the moving average half-time parameter for the
price oracle and the allowed extra profit can be adjusted by calling commit_new_parameters which
allows to call apply_new_parameters after a fixed waiting period (3 days). The changes are
immediate after apply_new_parameters has been called. Alternatively, if revert_new_parameters
the proposed changes are reset.

The contract can be paused and unpaused (called killed) in the first two months which prevents calling
add_liquidity, remove_liquidity_one_coin and exchange.

2.2.6 Liquidity
Initially, for the exchange to work, liquidity needs to be provided. A future liquidity provider can call
add_liquidity to do so. If the contract is not paused, the function pulls the funds into the exchange
contract with a transferFrom. Based on the new balances and existing prices in the pool, the curve
parameter D is calculated. D is needed to determine the amount of tokens representing the share the
liquidity provider now owns from all deposited funds in the exchange pool (called liquidity tokens). A fee
is deducted and the liquidity tokens are minted to the liquidity provider.

If D > 0 (should be the case if it is not the first deposit), the function conditionally updates the price
information and profit calculation. The condition for updating the price information and, hence, changing
the curve is that no more than half of the accumulated historic exchange profit can be lost with price
updates. The definition of profit and loss is provided in Curve's documentation. When liquidity has been
added successfully, add_liquidity emits the event AddLiquidity.

To withdraw provided tokens, a liquidity provider can call remove_liquidity or
remove_liquidity_one_coin. The functions burn the provided amount of pool liquidity tokens,
calculate the corresponding amount of tokens and transfer the tokens to the function callee.
remove_liquidity will transfer tokens from each coin in the pool's current ratio.
remove_liquidity_one_coin will payout an equivalent amount in one token. Both functions will
update D. Additionally, remove_liquidity_one_coin will deduct a fee and conditionally update the
price information.

2.2.7 Trading
Users that want to exchange two tokens can call exchange. The user needs to provide the information
about which tokens shall be exchanged, provide the amount to be exchanged and specify a minimum
amount of tokens to be received. The exchange function pulls the funds to be exchanged into the
exchange contracts via a transferFrom. Then, it calculates how many tokens the user will receive,
deducts the fees and transfers the resulting amount to the user.

As described above, the function conditionally updates the price information and profit calculation. When
the trade was successful, the event TokenExchange is emitted.

2.2.8 Miscellaneous
The code has multiple checks for unsafe parameters. These unsafe parameters were obtained by fuzzing
and might not be sufficiently tight. As an example the convergence limit for the approximation of
determining a new pool token balance is defined as:

convergence_limit: uint256 = max(max(x_sorted[0] / 10**14, D / 10**14), 100)

Further conditions exist for the size of pool contributions (measured in value and hence as price times
amount) for a single token as well as the relative size of different pool contributions.

Swiss Stake GmbH - Tricrypto - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

Swiss Stake GmbH - Tricrypto - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Swiss Stake GmbH - Tricrypto - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved, have been moved to
the Resolved Findings section. All of the findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 3

• AcknowledgedAsymmetrical Norm in Price Update Threshold

• AcknowledgedMissing Boundary or Sanity Checks When Initializing

• AcknowledgedPotential Gas Savings in tweak_price

5.1 Asymmetrical Norm in Price Update Threshold
Design Low Version 3 Acknowledged

In the tweak_price function the norm value is calculated to determine whether the distance between
price_oracle and price_scale is sufficiently large so that a price update should be tried. To
calculate the norm, the ratios between the price_scale and price_oracle are used. However, the
ratios aren't treated symmetrically, i.e. if price_oracle = price_scale * 1.1 then the value 0.1^2
is added to the norm, but if the ratio is reversed, price_oracle * 1.1 = price_scale, then the
value 0.09^2 is added. This means the price update is more sensitive to changes where the price oracle
is too high, than when it is too low.

Acknowledged:

As typical differences between price_scale and price_oracle are between zero and five percent,
the effect is not as large. Hence, Swiss Stake GmbH decided to not make any more changes at the
moment

5.2 Missing Boundary or Sanity Checks When
Initializing
Design Low Version 1 Acknowledged

Most variables have implicitly or explicitly enforced minimal and maximal values or should not take
certain values like address zero. These are enforced when changing the values or given the ownership
through a claiming scheme. However, there are no sanity checks or any checks at all when initializing the
contract. Mistakes can happen and silently set one of the values to an obviously incorrect value.

Swiss Stake GmbH - Tricrypto - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

Acknowledged

Swiss Stake GmbH is aware of the issue and confident no deployment errors will happen. In case of a
factory contract the issue needs to be reconsidered.

5.3 Potential Gas Savings in tweak_price
Design Low Version 1 Acknowledged

The following code is present in the tweak_price function:

xp: uint256[N_COINS] = empty(uint256[N_COINS])
xp[0] = D_unadjusted / N_COINS
for k in range(N_COINS-1):
 xp[k+1] = D_unadjusted * 10**18 / (N_COINS * price_scale[k])
xcp_profit: uint256 = 10**18
virtual_price: uint256 = 10**18

Most of these variables (except xcp_profit) are only used when the condition
old_virtual_price > 0 is true. Hence, these variables could be moved inside of the condition to
save gas in case the condition evaluates to false.

Acknowledged

Swiss Stake GmbH acknowledges the issue with the reasoning that gas savings are not significant
enough to make a change.

Swiss Stake GmbH - Tricrypto - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code CorrectedCertain Token Combination Cause Numerical Errors

Low -Severity Findings 6

• Code CorrectedMismatched Bounds

• Code CorrectedEvent Information Missing

• Code CorrectedParameter Check Missing

• Code CorrectedAdmin Fees Can Be Claimed Retroactively

• Code CorrectedPacked Getters Can Be More Restrictive

• Code CorrectedSlight Code Simplification

6.1 Certain Token Combination Cause Numerical
Errors
Design Medium Version 1 Code Corrected

If one of the tokens has very few decimals, e.g. Gemini USD which has 2 decimals, and another token
either has more than 18 decimals or a fairly low token value, severe numerical errors can arise.

Example:

• Token 0: Gemini USD (GUSD), 2 Decimals

• Token 1: Another Token (AT), 18 Decimals, 1 AT = 0.005 USD

An exchange of 10,000 GUSD to 2,000,000 AT takes place. Note that the amounts don't matter as the
error will occur based on the ratio. The price is computed as:

• p = dx * 10**18 / dy

• with dx = 10,000 * 10** 2

• and dy = 2,000,000 * 10**18

• hence, p = 0

In this case the calculated price is zero, which triggers no special checks or fallbacks.

This situation is even more likely due to the packing of calculated prices and the used
PRICE_PRECISION_MUL of 10**8.

Another Example:

• Token 0: USDC, 6 Decimals

• Token 1: Another Token (AT), 18 Decimals, 1 AT = 1.00 USD

Swiss Stake GmbH - Tricrypto - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

An exchange of 10,000 USDC to 10,000 AT takes place. Note that the amounts don't matter as the error
will occur based on the ratio. The price is computed as:

• p = dx * 10**18 / dy

• with dx = 10,000 * 10** 6

• and dy = 10,000 * 10**18

• hence, p = 10 ** 6

However, during packing this price will be divided by 10**8 and hence become 0.

Overall, the project has a good test suite, but it would benefit from tests containing token contracts with
different decimals.

Code corrected:

The price calculation was refactored and changed. The token amounts are now scaled to 18 decimals
always instead of relative to the other token.

6.2 Mismatched Bounds
Design Low Version 3 Code Corrected

The minimum and maximum values for A in the swap contract and the math contract do not match. In
fact, the bounds in the math contract are more restrictive, meaning it's possible to ramp to a new value
such that the math contract will revert all calls to newton_y and newton_D, basically locking the system
until a valid value for A is set. Additionally, the maximum value for gamma also is mismatched, but the
bounds are more restrictive in the swap contract, which does not cause any issues.

Code corrected:

The code was corrected to make sure that the bounds of the math contract and the swap contract match.

6.3 Event Information Missing
Design Low Version 2 Code Corrected

The CurveCryptoSwap contract emits different events. When parameter ramping starts, a
RampAgamma event is emitted. However, contrary to expectations based on the name, it contains no
information about gamma.

Code corrected:

The relevant information was added to the RampAgamma event.

6.4 Parameter Check Missing
Design Low Version 2 Code Corrected

Swiss Stake GmbH - Tricrypto - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

System parameters can be updated by the administrators of the system. When being updated the new
values are checked. The price_threshold and the mid_fee can both be updated, however, the fact
that:

assert new_price_threshold > new_mid_fee

will only be checked when the price_threshold is updated and not when mid_fee is updated.

Code corrected:

The issue was resolved through refactoring.

6.5 Admin Fees Can Be Claimed Retroactively
Design Low Version 1 Code Corrected

When users see the admin_fee variable of the pool being 0 they will probably assume that no admin
fees are being charged at the moment. However, this is not correct. Let's consider the following scenario:

Time Action

0 the pool is started with admin_fee = 0

10 numerous swap have occurred and xcp_profit has grown

11 the admin fee is set to 1% using commit_new_parameters and apply_new_parameters

12 the function claim_admin_fees is called

Users might expect that the admin fees will only be claimed for the time period of 11-12. However, admin
fees will be claimed for the time period 0-12. This is because xcp_profit_a hasn't been updated in the
meantime.

Code corrected

When changing the admin fee, the admin fees are claimed for the period until the change. Admin fees are
only paid for the period beginning at the last time they were claimed. Hence, the issue is resolved.

6.6 Packed Getters Can Be More Restrictive
Design Low Version 1 Code Corrected

There are three functions to access packed values: price_oracle, price_scale, and
last_prices. All three functions take an integer as input and retrieve the value at the respective offset.
They make sure that the provided integer is:

assert k < N_COINS

However, k == N_COINS - 1 is not a valid input for any of these functions and could also be blocked.

Code corrected

A check to validate k < N_COINS - 1 has been added.

Swiss Stake GmbH - Tricrypto - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6.7 Slight Code Simplification
Design Low Version 1 Code Corrected

Within the claim_admin_fees function there is the following code:

frac: uint256 = vprice * 10**18 / (vprice - fees) - 10**18
total_supply: uint256 = CurveToken(token).totalSupply()
claimed: uint256 = CurveToken(token).mint_relative(owner, frac)
total_supply += claimed

During mint_relative the totalSupply will be updated. Hence, it could also be queried once after
the call to mint_relative instead of querying it before and then updating it later.

Code corrected

The first total supply query was removed and the total supply is queried after the update.

Swiss Stake GmbH - Tricrypto - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

7 Notes
We leverage this section to highlight minor findings that should be noted and considered for further
development, but don't necessarily require an immediate code change.

7.1 Possible Price Manipulations
Note Version 1

We see the following price manipulations as possible:

1. Pushing price_scale towards price_oracle. In case a user wants to perform a larger
exchange and the price inside the price_oracle is significantly better for that exchange than the
price inside price_scale, then the user can push price_scale towards price_oracle using
small trades. This works as the update for price_scale only depends on its distance to
price_oracle not on previous actions within the same block.

2. The price_oracle is only affected by the last price seen in each block. Hence, big exchanges can
be "hidden" from the price_oracle if they are followed by other exchanges with a different rate.
Note that these trailing exchanges can be way smaller. Such trailing exchanges, if reliably inserted,
allow full control over the price_oracle and thereby (as mentioned in the previous comment) also
over price_scale.

7.2 Potential Gas Saving for Balanced Liquidity
Additions
Note Version 1

In case last_prices did not change because liquidity was added in the current pool ratios, the
following code part could be skipped.

__xp: uint256[N_COINS] = _xp
 dx_price: uint256 = __xp[0] / 10**6
 __xp[0] += dx_price
 for k in range(N_COINS-1):
 self.last_prices[k] = price_scale[k] * dx_price / ...

However, it is unclear whether this is a worthwhile addition as a perfectly balanced liqudity addition will
be a rare case unless the UI encourages it to save gas costs.

7.3 Splitting up Exchanges
Note Version 1

For users it can be beneficial to split up a larger exchange into multiple smaller exchanges in order to
save fees. Depending on the price constellation and the gamma value they can remain in the "flat" area
of the curve and hence save fees. This is of course detrimental to the liquidity providers. The usefulness
of the split depends on the gas costs and the curve parameters.

Swiss Stake GmbH - Tricrypto - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

7.4 Supported Tokens
Note Version 1

There is are variety of different token implementations on the Ethereum blockchain. Using tokens with
unusual behavior will lead to unexpected changes of the curve or put the smart contracts into a bad state.
In particular, the following token types will not work:

• rebasing tokens, where balances can change without transfers. These tokens will lead to incorrect
accounting.

• tokens with transfer fees. These tokens will lead to incorrect accounting.

• tokens with incorrect ERC20 implementations.

• tokens with more than 18 decimals

• tokens with more than one address

7.5 The General Case of n Token Versus A
Note Version 1

The audit was scoped for the case n=3 tokens. Nonetheless, we like to highlight our concerns for a
bigger n. The contracts are written very generic for the case of n tokens. However, the n cannot be
simply increased. As an example, with larger n space for the packed variables becomes smaller. Hence,
such cases need to be tested carefully.

7.6 Variable Naming
Note Version 1

Naming variables in a clear and understandable way supports the understanding of complex projects like
this. Most variables have self explaining names. But some are confusing or used inconsistently like the
use of x and xp. The value (product of price and amount) of a pool token is usually denoted with xp.
However, the CurveCryptoMath3 contract often does not follow this naming convention consistently
and x is used. Furthermore, A which is actually ANN * A_MULTIPLIER or gamma in
reduction_coefficient which should be fee_gamma.

7.7 Vyper Is Still Beta
Note Version 1

Even though Vyper is used heavily in the latest DeFi projects (especially AMMs), the Vyper language is
still Beta software and should be used with care as bugs might arise. Nevertheless, Curve and other
AMMs have used recent Vyper versions successfully.

Swiss Stake GmbH - Tricrypto - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope
	2.1.2 Excluded from this report

	2.2 System Overview
	2.2.1 The Pool
	2.2.2 The Curve
	2.2.3 Profit and Conditional Price Recalculations
	2.2.4 The Fee Model
	2.2.5 Administration
	2.2.6 Liquidity
	2.2.7 Trading
	2.2.8 Miscellaneous

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Asymmetrical Norm in Price Update Threshold
	5.2 Missing Boundary or Sanity Checks When Initializing
	5.3 Potential Gas Savings in tweak_price

	6 Resolved Findings
	6.1 Certain Token Combination Cause Numerical Errors
	6.2 Mismatched Bounds
	6.3 Event Information Missing
	6.4 Parameter Check Missing
	6.5 Admin Fees Can Be Claimed Retroactively
	6.6 Packed Getters Can Be More Restrictive
	6.7 Slight Code Simplification

	7 Notes
	7.1 Possible Price Manipulations
	7.2 Potential Gas Saving for Balanced Liquidity Additions
	7.3 Splitting up Exchanges
	7.4 Supported Tokens
	7.5 The General Case of n Token Versus A
	7.6 Variable Naming
	7.7 Vyper Is Still Beta

